Trajectory-User Linking via Hierarchical Spatio-Temporal Attention Networks

被引:2
|
作者
Chen, Wei [1 ,3 ]
Huang, Chao [2 ]
Yu, Yanwei [1 ,3 ]
Jiang, Yongguo [1 ,3 ]
Dong, Junyu [1 ,3 ]
机构
[1] Ocean Univ China, Qingdao, Peoples R China
[2] Univ Hong Kong, Pokfulam, Hong Kong, Peoples R China
[3] Univ China, Songling RD 238, Qingdao 266100, Shandong, Peoples R China
基金
中国国家自然科学基金;
关键词
Trajectory-user linking; attention neural networks; trajectory representation learning; spatio-temporal data;
D O I
10.1145/3635718
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Trajectory-User Linking (TUL) is crucial for human mobility modeling by linking different trajectories to users with the exploration of complex mobility patterns. Existing works mainly rely on the recurrent neural framework to encode the temporal dependencies in trajectories, have fall short in capturing spatial-temporal global context for TUL prediction. To fill this gap, this work presents a new hierarchical spatio-temporal attention neural network, called AttnTUL, to jointly encode the local trajectory transitional patterns and global spatial dependencies for TUL. Specifically, our first model component is built over the graph neural architecture to preserve the local and global context and enhance the representation paradigm of geographical regions and user trajectories. Additionally, a hierarchically structured attention network is designed to simultaneously encode the intra-trajectory and inter-trajectory dependencies, with the integration of the temporal attention mechanism and global elastic attentional encoder. Extensive experiments demonstrate the superiority of our AttnTUL method as compared to state-of-the-art baselines on various trajectory datasets. The source code of our model is available at https://github.com/Onedean/AttnTUL.
引用
收藏
页数:22
相关论文
共 50 条
  • [21] Spatio-temporal graph attention networks for traffic prediction
    Ma, Chuang
    Yan, Li
    Xu, Guangxia
    TRANSPORTATION LETTERS-THE INTERNATIONAL JOURNAL OF TRANSPORTATION RESEARCH, 2024, 16 (09): : 978 - 988
  • [22] Spatio-Temporal Attention Networks for Action Recognition and Detection
    Li, Jun
    Liu, Xianglong
    Zhang, Wenxuan
    Zhang, Mingyuan
    Song, Jingkuan
    Sebe, Nicu
    IEEE TRANSACTIONS ON MULTIMEDIA, 2020, 22 (11) : 2990 - 3001
  • [23] Spatio-temporal trajectory alignment for trajectory evaluation
    Tombrink, Gereon
    Dreier, Ansgar
    Klingbeil, Lasse
    Kuhlmann, Heiner
    JOURNAL OF APPLIED GEODESY, 2024,
  • [24] Spatio-temporal trajectory anonymous algorithm via map matching
    Peng, R.-Q. (rqp1985@gmail.com), 1600, Northeast University (35):
  • [25] Spatio-temporal ontologies and attention
    University of Freiburg, Freiburg, Germany
    Spat. Cogn. Comput., 2007, 1 (13-32):
  • [26] Spatio-Temporal Modeling and Prediction of Visual Attention in Graphical User Interfaces
    Xu, Pingmei
    Sugano, Yusuke
    Bulling, Andreas
    34TH ANNUAL CHI CONFERENCE ON HUMAN FACTORS IN COMPUTING SYSTEMS, CHI 2016, 2016, : 3299 - 3310
  • [27] Hierarchical Spatio-Temporal Graph Neural Networks for Pandemic Forecasting
    Ma, Yihong
    Gerard, Patrick
    Tian, Yijun
    Guo, Zhichun
    Chawla, Nitesh V.
    PROCEEDINGS OF THE 31ST ACM INTERNATIONAL CONFERENCE ON INFORMATION AND KNOWLEDGE MANAGEMENT, CIKM 2022, 2022, : 1481 - 1490
  • [28] User Identification with Spatio-Temporal Awareness across Social Networks
    Gao, Xing
    Ji, Wenli
    Li, Yongjun
    Deng, Yao
    Dong, Wei
    CIKM'18: PROCEEDINGS OF THE 27TH ACM INTERNATIONAL CONFERENCE ON INFORMATION AND KNOWLEDGE MANAGEMENT, 2018, : 1831 - 1834
  • [29] Hierarchical spatio-temporal graph ODE networks for traffic forecasting
    Xu, Tao
    Deng, Jiaming
    Ma, Ruolin
    Zhang, Zixiang
    Zhao, Yingying
    Zhao, Zhilong
    Zhang, Juntao
    INFORMATION FUSION, 2025, 113
  • [30] Unified Spatio-Temporal Attention Networks for Action Recognition in Videos
    Li, Dong
    Yao, Ting
    Duan, Ling-Yu
    Mei, Tao
    Rui, Yong
    IEEE TRANSACTIONS ON MULTIMEDIA, 2019, 21 (02) : 416 - 428