The nexus of sustainable fisheries: A hybrid self-powered and self-sensing wave energy harvester

被引:5
|
作者
Liu, Weizhen [1 ]
Li, Yingjie [1 ]
Tang, Hongjie [3 ]
Zhang, Zutao [2 ]
Wu, Xiaoping [4 ]
Zhao, Jie [1 ]
Zeng, Lei [1 ]
Tang, Minfeng [4 ]
Hao, Daning [4 ]
机构
[1] Southwest Jiaotong Univ, Tangshan Inst, Tangshan 063008, Peoples R China
[2] Chengdu Technol Univ, Chengdu 611730, Peoples R China
[3] Southwest Jiaotong Univ, Sch Informat Sci & Tech, Chengdu 610031, Peoples R China
[4] Southwest Jiaotong Univ, Sch Mech Engn, Chengdu 610031, Peoples R China
关键词
Sustainable fisheries; Eccentric pendulum; Wave energy harvester; Wave monitoring; Triboelectric nanogenerator; TRIBOELECTRIC NANOGENERATOR;
D O I
10.1016/j.oceaneng.2024.116996
中图分类号
U6 [水路运输]; P75 [海洋工程];
学科分类号
0814 ; 081505 ; 0824 ; 082401 ;
摘要
Wave energy harvesters (WEHs) are an effective solution to the problem of powering sensors in marine fisheries. A future direction for WEHs is to achieve wave monitoring while meeting the power requirements of the sensors. This paper presents a hybrid self -powered and self -sensing wave energy harvester (HSS-WEH), which consists of three modules: an energy input module, a self -powered module, and a self -sensing module. In this study, an eccentric pendulum is used to capture low -frequency irregular wave energy. The proposed rectification enhancement mechanism (REM) converts the bidirectional rotation of the spindle into the unidirectional rotation of the magnet flywheel. In addition, a triboelectric nanogenerator based on rolling PTFE balls is used to convert wave information into electrical signals for wave monitoring. The optimization of the mass of the eccentric pendulum was achieved through a six -degree -of -freedom platform experiment. At 0.3 Hz, the electromagnetic generator power with REM is enhanced by 36.11 % to 7.84 mW than without REM. Furthermore, the self -sensing module achieves a high level of accuracy, reaching 98.62 % in identifying the risk level of the waves. Water tank experiments and energy consumption analysis of sensors confirm the practical applicability of HSS-WEH in sustainable fisheries.
引用
收藏
页数:17
相关论文
共 50 条
  • [21] RF Energy Harvester Integrated Self-Powered Wearable Respiratory Monitoring System
    Parvin, Dilruba
    Hassan, Omiya
    Oh, Taeho
    Islam, Syed Kamrul
    2021 IEEE INTERNATIONAL INSTRUMENTATION AND MEASUREMENT TECHNOLOGY CONFERENCE (I2MTC 2021), 2021,
  • [22] Triboelectric nanogenerator with liquid metal electrode surface microarray structure for self-powered bidirectional sensing and energy harvester
    Liu, Yaming
    Luo, Jingjing
    Gao, Kaizheng
    Li, Huizhen
    He, Peng
    Zhao, Weiwei
    MATERIALS TODAY COMMUNICATIONS, 2025, 44
  • [23] Nanogenerators for Self-Powered Gas Sensing
    Wen, Zhen
    Shen, Qingqing
    Sun, Xuhui
    NANO-MICRO LETTERS, 2017, 9 (04)
  • [24] A real-time, self-powered wireless pressure sensing system with efficient coupling energy harvester, sensing, and communication modules
    Wang, Tingyu
    Wang, Cong
    Zeng, Qixuan
    Gu, Guangqin
    Wang, Xue
    Cheng, Gang
    Du, Zuliang
    NANO ENERGY, 2024, 125
  • [25] Design and analysis of triboelectric energy harvester with an application in self-powered smart mask
    Khan, Souvik
    Mukherjee, Banibrata
    JOURNAL OF ELECTROSTATICS, 2024, 129
  • [26] Enhanced Triboelectric Nanogenerator Based on a Hybrid Cellulose Aerogel for Energy Harvesting and Self-Powered Sensing
    Luo, Chen
    Ma, Hongzhi
    Yu, Hua
    Zhang, Yuhao
    Shao, Yan
    Yin, Bo
    Ke, Kai
    Zhou, Ling
    Zhang, Kai
    Yang, Ming-Bo
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2023, 11 (25) : 9424 - 9432
  • [27] Sustainable and smart rail transit based on advanced self-powered sensing technology
    Tang, Hongjie
    Kong, Lingji
    Fang, Zheng
    Zhang, Zutao
    Zhou, Jianhong
    Chen, Hongyu
    Sun, Jiantong
    Zou, Xiaolong
    ISCIENCE, 2024, 27 (12)
  • [28] A static-dynamic energy harvester for a self-powered ocean environment monitoring application
    Xue Feng
    Chen Liang
    Li ChunCheng
    Ren Jing
    Yu JunBin
    Hou XiaoJuan
    Geng WenPing
    Mu JiLiang
    He Jian
    Chou XiuJian
    SCIENCE CHINA-TECHNOLOGICAL SCIENCES, 2022, 65 (04) : 893 - 902
  • [29] Fully stretchable triboelectric nanogenerator for energy harvesting and self-powered sensing
    Li, Xunjia
    Jiang, Chengmei
    Zhao, Fengnian
    Lan, Lingyi
    Yao, Yao
    Yu, Yonghua
    Ping, Jianfeng
    Ying, Yibin
    NANO ENERGY, 2019, 61 : 78 - 85
  • [30] A bioinspired triboelectric nanogenerator for all state energy harvester and self-powered rotating monitor
    Ma, Guoliang
    Li, Bo
    Niu, Shichao
    Zhang, Junqiu
    Wang, Dakai
    Wang, Ze
    Zhou, Liang
    Liu, Qiang
    Liu, Linpeng
    Wang, Jingxiang
    Han, Zhiwu
    Ren, Luquan
    NANO ENERGY, 2022, 91