Assessing the Quality of a Knowledge Graph via Link Prediction Tasks

被引:0
|
作者
Zhu, Ruiqi [1 ]
Bundy, Alan [1 ]
Wang, Fangrong [1 ]
Li, Xue [1 ]
Nuamah, Kuwabena [1 ]
Xu, Lei [2 ]
Mauceri, Stefano [2 ]
Pan, J. Z. [1 ,3 ]
机构
[1] Univ Edinburgh, Edinburgh, Midlothian, Scotland
[2] Huawei Ireland Res Ctr, Dublin, Ireland
[3] Huawei Edinburgh Res Ctr, Edinburgh, Midlothian, Scotland
来源
PROCEEDINGS OF 2023 7TH INTERNATIONAL CONFERENCE ON NATURAL LANGUAGE PROCESSING AND INFORMATION RETRIEVAL, NLPIR 2023 | 2023年
基金
英国工程与自然科学研究理事会;
关键词
Knowledge Graph; Link Prediction; Quality Assessment;
D O I
10.1145/3639233.3639357
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Knowledge Graph (KG) Construction is the prerequisite for all other KG research and applications. Researchers and engineers have proposed various approaches to build KGs for their use cases. However, how can we know whether our constructed KG is good or bad? Is it correct and complete? Is it consistent and robust? In this paper, we propose a method called LP-Measure to assess the quality of a KG via a link prediction tasks, without using a gold standard or other human labour. Though theoretically, the LP-Measure can only assess consistency and redundancy, instead of the more desirable correctness and completeness, empirical evidence shows that this measurement method can quantitatively distinguish the good KGs from the bad ones, even in terms of incorrectness and incompleteness. Compared with the most commonly used manual assessment, our LP-Measure is an automated evaluation, which saves time and human labour.
引用
收藏
页码:124 / 129
页数:6
相关论文
共 50 条
  • [1] A Knowledge Selective Adversarial Network for Link Prediction in Knowledge Graph
    Hu, Kairong
    Liu, Hai
    Hao, Tianyong
    NATURAL LANGUAGE PROCESSING AND CHINESE COMPUTING (NLPCC 2019), PT I, 2019, 11838 : 171 - 183
  • [2] Comparing Knowledge Graph Representation Models for Link Prediction
    Chuanming Y.
    Zhengang Z.
    Lingge K.
    Data Analysis and Knowledge Discovery, 2021, 5 (11) : 29 - 44
  • [3] Dual Graph Embedding for Object-Tag Link Prediction on the Knowledge Graph
    Li, Chenyang
    Chen, Xu
    Zhang, Ya
    Chen, Siheng
    Lv, Dan
    Wang, Yanfeng
    11TH IEEE INTERNATIONAL CONFERENCE ON KNOWLEDGE GRAPH (ICKG 2020), 2020, : 283 - 290
  • [4] The Research of Link Prediction in Knowledge Graph based on Distance Constraint
    Wei, Linlu
    Liu, Fangfang
    2020 IEEE 13TH INTERNATIONAL CONFERENCE ON SERVICES COMPUTING (SCC 2020), 2020, : 68 - 75
  • [5] A Collaborative Filtering Model for Link Prediction of Fusion Knowledge Graph
    Yu, Zaifu
    Shang, Wenqian
    Lin, Weiguo
    Huang, Wei
    2021 21ST ACIS INTERNATIONAL WINTER CONFERENCE ON SOFTWARE ENGINEERING, ARTIFICIAL INTELLIGENCE, NETWORKING AND PARALLEL/DISTRIBUTED COMPUTING (SNPD-WINTER 2021), 2021, : 33 - 38
  • [6] Knowledge graph embedding by projection and rotation on hyperplanes for link prediction
    Thanh Le
    Ngoc Huynh
    Bac Le
    APPLIED INTELLIGENCE, 2023, 53 (09) : 10340 - 10364
  • [7] Complex graph convolutional network for link prediction in knowledge graphs
    Zeb, Adnan
    Saif, Summaya
    Chen, Junde
    Ul Haq, Anwar
    Gong, Zhiguo
    Zhang, Defu
    EXPERT SYSTEMS WITH APPLICATIONS, 2022, 200
  • [8] A Novel Deep Learning Model for Link Prediction of Knowledge Graph
    Ding, Shuai
    Lai, Qinghan
    Zhou, Zihan
    Gong, Jinghao
    Cui, Jin'an
    Liu, Song
    2022 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS (ISCAS 22), 2022, : 2477 - 2481
  • [9] LineaRE: Simple but Powerful Knowledge Graph Embedding for Link Prediction
    Peng, Yanhui
    Zhang, Jing
    20TH IEEE INTERNATIONAL CONFERENCE ON DATA MINING (ICDM 2020), 2020, : 422 - 431
  • [10] Approach for link prediction of knowledge graph based on probabilistic inferences
    Yao J.
    Li J.
    Yue K.
    Duan L.
    Fu X.
    Jisuanji Jicheng Zhizao Xitong/Computer Integrated Manufacturing Systems, CIMS, 2023, 29 (10): : 3483 - 3495