RINGS WITH DIVISIBILITY ON ASCENDING CHAINS OF IDEALS

被引:1
作者
Safi, Oussama Aymane Es [1 ]
Mahdou, Najib [1 ]
Yousif, Mohamed [2 ]
机构
[1] Univ SM Ben Abdellah Fez, Fac Sci & Technol Fez, Dept Math, Lab Modelling & Math Struct, Box 2202, Fes, Morocco
[2] Ohio State Univ, Dept Math, Columbus, OH USA
来源
INTERNATIONAL ELECTRONIC JOURNAL OF ALGEBRA | 2024年 / 35卷
关键词
Commutative ring; ring with the Accd-condition; trivial ring ex-tension; noetherian ring;
D O I
10.24330/ieja.1299720
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
According to Dastanpour and Ghorbani, a ring R is said to satisfy divisibility on ascending chains of right ideals (ACC(d)) if, for every ascending chain of right ideals I-1 subset of I-2 subset of I-3 subset of I-4 subset of ... of R, there exists an integer k is an element of N such that for each i > k, there exists an element ai E R such that I-i = a(i)I(i+1). In this paper, we examine the transfer of the ACC(d)-condition on ideals to trivial ring extensions. Moreover, we investigate the connection between the ACC(d) on ideals and other ascending chain conditions. For example we will prove that if R is a ring with ACC(d) on ideals, then R has ACC on prime ideals.
引用
收藏
页码:82 / 89
页数:8
相关论文
共 9 条
[1]   IDEALIZATION OF A MODULE [J].
Anderson, D. D. ;
Winders, Michael .
JOURNAL OF COMMUTATIVE ALGEBRA, 2009, 1 (01) :3-56
[2]   Trivial extensions defined by Prufer conditions [J].
Bakkari, C. ;
Kabbaj, S. ;
Mahdou, N. .
JOURNAL OF PURE AND APPLIED ALGEBRA, 2010, 214 (01) :53-60
[3]  
Bakkari C., 2014, GULF J MATH, V2, P1, DOI [10.56947/gjom.v2i2.193, DOI 10.56947/GJOM.V2I2.193]
[4]   ON WEAKLY COHERENT RINGS [J].
Bakkari, Chahrazade ;
Mahdou, Najib .
ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2014, 44 (03) :743-752
[5]   Rings with divisibility on chains of ideals [J].
Dastanpour, R. ;
Ghorbani, A. .
COMMUNICATIONS IN ALGEBRA, 2017, 45 (07) :2889-2898
[6]  
GLAZ S, 1989, LECT NOTES MATH, V1371, P1
[7]  
Huckaba J. A., 1988, Monographs and Textbooks in Pure and Applied Mathematics, V117
[8]   Trivial extensions defined by coherent-like conditions [J].
Kabbaj, SE ;
Mahdou, N .
COMMUNICATIONS IN ALGEBRA, 2004, 32 (10) :3937-3953
[9]   A GENERALIZATION OF QUASI-FROBENIUS RINGS [J].
OSOFSKY, BL .
JOURNAL OF ALGEBRA, 1966, 4 (03) :373-&