Machine learning renormalization group for statistical physics

被引:1
|
作者
Hou, Wanda [1 ]
You, Yi-Zhuang [1 ]
机构
[1] Univ Calif San Diego, Dept Phys, La Jolla, CA 92093 USA
来源
MACHINE LEARNING-SCIENCE AND TECHNOLOGY | 2023年 / 4卷 / 04期
基金
美国国家科学基金会;
关键词
generative modeling; statistical physics; renormalization group; MONTE-CARLO RENORMALIZATION; COUPLING PARAMETERS;
D O I
10.1088/2632-2153/ad0101
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We develop a machine-learning renormalization group (MLRG) algorithm to explore and analyze many-body lattice models in statistical physics. Using the representation learning capability of generative modeling, MLRG automatically learns the optimal renormalization group (RG) transformations from self-generated spin configurations and formulates RG equations without human supervision. The algorithm does not focus on simulating any particular lattice model but broadly explores all possible models compatible with the internal and lattice symmetries given the on-site symmetry representation. It can uncover the RG monotone that governs the RG flow, assuming a strong form of the c-theorem. This enables several downstream tasks, including unsupervised classification of phases, automatic location of phase transitions or critical points, controlled estimation of critical exponents, and operator scaling dimensions. We demonstrate the MLRG method in two-dimensional lattice models with Ising symmetry and show that the algorithm correctly identifies and characterizes the Ising criticality.
引用
收藏
页数:16
相关论文
共 50 条
  • [41] Deep Learning the Functional Renormalization Group
    Di Sante, Domenico
    Medvidovi, Matija
    Toschi, Alessandro
    Sangiovanni, Giorgio
    Franchini, Cesare
    Sengupta, Anirvan M.
    Millis, Andrew J.
    PHYSICAL REVIEW LETTERS, 2022, 129 (13)
  • [42] Is Deep Learning a Renormalization Group Flow?
    Koch, Ellen De Mello
    Koch, Robert De Mello
    Cheng, Ling
    IEEE ACCESS, 2020, 8 (08): : 106487 - 106505
  • [43] The Inverse of Exact Renormalization Group Flows as Statistical Inference
    Berman, David S.
    Klinger, Marc S.
    ENTROPY, 2024, 26 (05)
  • [44] Utilizing statistical physics and machine learning to discover collective behavior on temporal social networks
    Kong, Yi-Xiu
    Wu, Rui-Jie
    Zhang, Yi-Cheng
    Shi, Gui-Yuan
    INFORMATION PROCESSING & MANAGEMENT, 2023, 60 (02)
  • [45] The development of renormalization group methods for particle physics: Formal analogies between classical statistical mechanics and quantum field theory
    Fraser, Doreen
    SYNTHESE, 2020, 197 (07) : 3027 - 3063
  • [46] The development of renormalization group methods for particle physics: Formal analogies between classical statistical mechanics and quantum field theory
    Doreen Fraser
    Synthese, 2020, 197 : 3027 - 3063
  • [47] Renormalization group in mathematical physics and some problems of laser optics
    Kovalev, VF
    Shirkov, DV
    JOURNAL OF NONLINEAR OPTICAL PHYSICS & MATERIALS, 1997, 6 (04): : 443 - 454
  • [48] Machine Learning in Particle Physics
    Purohit, Milind, V
    BIG DATA ANALYTICS IN ASTRONOMY, SCIENCE, AND ENGINEERING, BDA 2023, 2024, 14516 : 128 - 138
  • [49] Machine learning in solar physics
    Andrés Asensio Ramos
    Mark C. M. Cheung
    Iulia Chifu
    Ricardo Gafeira
    Living Reviews in Solar Physics, 20
  • [50] Pervasive machine learning in physics
    不详
    NATURE REVIEWS PHYSICS, 2022, 4 (06) : 353 - 353