Machine learning renormalization group for statistical physics

被引:1
|
作者
Hou, Wanda [1 ]
You, Yi-Zhuang [1 ]
机构
[1] Univ Calif San Diego, Dept Phys, La Jolla, CA 92093 USA
来源
MACHINE LEARNING-SCIENCE AND TECHNOLOGY | 2023年 / 4卷 / 04期
基金
美国国家科学基金会;
关键词
generative modeling; statistical physics; renormalization group; MONTE-CARLO RENORMALIZATION; COUPLING PARAMETERS;
D O I
10.1088/2632-2153/ad0101
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We develop a machine-learning renormalization group (MLRG) algorithm to explore and analyze many-body lattice models in statistical physics. Using the representation learning capability of generative modeling, MLRG automatically learns the optimal renormalization group (RG) transformations from self-generated spin configurations and formulates RG equations without human supervision. The algorithm does not focus on simulating any particular lattice model but broadly explores all possible models compatible with the internal and lattice symmetries given the on-site symmetry representation. It can uncover the RG monotone that governs the RG flow, assuming a strong form of the c-theorem. This enables several downstream tasks, including unsupervised classification of phases, automatic location of phase transitions or critical points, controlled estimation of critical exponents, and operator scaling dimensions. We demonstrate the MLRG method in two-dimensional lattice models with Ising symmetry and show that the algorithm correctly identifies and characterizes the Ising criticality.
引用
收藏
页数:16
相关论文
共 50 条
  • [21] The Poincare-Shannon Machine: Statistical Physics and Machine Learning Aspects of Information Cohomology
    Baudot, Pierre
    ENTROPY, 2019, 21 (09)
  • [22] Efimov Physics from the Functional Renormalization Group
    Floerchinger, Stefan
    Moroz, Sergej
    Schmidt, Richard
    FEW-BODY SYSTEMS, 2011, 51 (2-4) : 153 - 180
  • [23] Efimov physics from a renormalization group perspective
    Hammer, Hans-Werner
    Platter, Lucas
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2011, 369 (1946): : 2679 - 2700
  • [24] The role of renormalization group in fundamental theoretical physics
    Shirkov, DV
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 1998, 12 (12-13): : 1247 - 1253
  • [25] Supersymmetry in particle physics: the renormalization group viewpoint
    Kazakov, DI
    PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2001, 344 (4-6): : 309 - 353
  • [26] Efimov Physics from the Functional Renormalization Group
    Stefan Floerchinger
    Sergej Moroz
    Richard Schmidt
    Few-Body Systems, 2011, 51 : 153 - 180
  • [27] A statistical physics approach for the analysis of machine learning algorithms on real data
    Malzahn, D
    Opper, M
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2005, : 17 - 49
  • [28] Quantum Chemical Density Matrix Renormalization Group Method Boosted by Machine Learning
    Golub, Pavlo
    Yang, Chao
    Vlcek, Vojtech
    Veis, Libor
    JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2025, 16 (13): : 3295 - 3301
  • [29] Statistical physics of group testing
    Mezard, Marc
    Tarzia, Marco
    Toninelli, Cristina
    INTERNATIONAL WORKSHOP ON STATISTICAL-MECHANICAL INFORMATICS 2007 (IW-SMI 2007), 2008, 95
  • [30] Statistical physics of the symmetric group
    Williams, Mobolaji
    PHYSICAL REVIEW E, 2017, 95 (04)