FedRDS: Federated Learning on Non-IID Data via Regularization and Data Sharing

被引:3
作者
Lv, Yankai [1 ,2 ]
Ding, Haiyan [1 ,2 ]
Wu, Hao [1 ,2 ]
Zhao, Yiji [3 ]
Zhang, Lei [4 ]
机构
[1] Yunnan Univ, Sch Informat Sci & Engn, Kunming 650091, Peoples R China
[2] Yunnan Univ, Key Lab Intelligent Syst & Comp Yunnan Prov, Kunming 650091, Peoples R China
[3] Beijing Jiaotong Univ, Sch Comp & Informat Technol, Beijing 100044, Peoples R China
[4] Nanjing Normal Univ, Sch Elect & Automat Engn, Nanjing 210023, Peoples R China
来源
APPLIED SCIENCES-BASEL | 2023年 / 13卷 / 23期
基金
中国国家自然科学基金;
关键词
federated learning; non-IID data; regularization; data sharing; machine learning;
D O I
10.3390/app132312962
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Federated learning (FL) is an emerging decentralized machine learning framework enabling private global model training by collaboratively leveraging local client data without transferring it centrally. Unlike traditional distributed optimization, FL trains the model at the local client and then aggregates it at the server. While this approach reduces communication costs, the local datasets of different clients are non-Independent and Identically Distributed (non-IID), which may make the local model inconsistent. The present study suggests a FL algorithm that leverages regularization and data sharing (FedRDS). The local loss function is adapted by introducing a regularization term in each round of training so that the local model will gradually move closer to the global model. However, when the client data distribution gap becomes large, adding regularization items will increase the degree of client drift. Based on this, we used a data-sharing method in which a portion of server data is taken out as a shared dataset during the initialization. We then evenly distributed these data to each client to mitigate the problem of client drift by reducing the difference in client data distribution. Analysis of experimental outcomes indicates that FedRDS surpasses some known FL methods in various image classification tasks, enhancing both communication efficacy and accuracy.
引用
收藏
页数:18
相关论文
共 42 条
[1]  
Acar D. A. E., 2021, P 9 INT C LEARN REPR
[2]   Federated Learning for Cybersecurity: Concepts, Challenges, and Future Directions [J].
Alazab, Mamoun ;
Priya, Swarna R. M. ;
Parimala, M. ;
Maddikunta, Praveen Kumar Reddy ;
Gadekallu, Thippa Reddy ;
Quoc-Viet Pham .
IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2022, 18 (05) :3501-3509
[3]  
Bezdek J.C., 2002, P ADV SOFT COMP AFSS
[4]  
Cao KD, 2019, ADV NEUR IN, V32
[5]   Partial Transfer Learning with Selective Adversarial Networks [J].
Cao, Zhangjie ;
Long, Mingsheng ;
Wang, Jianmin ;
Jordan, Michael I. .
2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, :2724-2732
[6]   Federated learning for predicting clinical outcomes in patients with COVID-19 [J].
Dayan, Ittai ;
Roth, Holger R. ;
Zhong, Aoxiao ;
Harouni, Ahmed ;
Gentili, Amilcare ;
Abidin, Anas Z. ;
Liu, Andrew ;
Costa, Anthony Beardsworth ;
Wood, Bradford J. ;
Tsai, Chien-Sung ;
Wang, Chih-Hung ;
Hsu, Chun-Nan ;
Lee, C. K. ;
Ruan, Peiying ;
Xu, Daguang ;
Wu, Dufan ;
Huang, Eddie ;
Kitamura, Felipe Campos ;
Lacey, Griffin ;
de Antonio Corradi, Gustavo Cesar ;
Nino, Gustavo ;
Shin, Hao-Hsin ;
Obinata, Hirofumi ;
Ren, Hui ;
Crane, Jason C. ;
Tetreault, Jesse ;
Guan, Jiahui ;
Garrett, John W. ;
Kaggie, Joshua D. ;
Park, Jung Gil ;
Dreyer, Keith ;
Juluru, Krishna ;
Kersten, Kristopher ;
Rockenbach, Marcio Aloisio Bezerra Cavalcanti ;
Linguraru, Marius George ;
Haider, Masoom A. ;
AbdelMaseeh, Meena ;
Rieke, Nicola ;
Damasceno, Pablo F. ;
Silva, Pedro Mario Cruz E. ;
Wang, Pochuan ;
Xu, Sheng ;
Kawano, Shuichi ;
Sriswasdi, Sira ;
Park, Soo Young ;
Grist, Thomas M. ;
Buch, Varun ;
Jantarabenjakul, Watsamon ;
Wang, Weichung ;
Tak, Won Young .
NATURE MEDICINE, 2021, 27 (10) :1735-+
[7]  
Dinh CT, 2020, ADV NEUR IN, V33
[8]   A Survey on Collaborative Learning for Intelligent Autonomous Systems [J].
Dos Anjos, Julio C. S. ;
Matteussi, Kassiano J. ;
Orlandi, Fernanda C. ;
Barbosa, Jorge L. V. ;
Silva, Jorge Sa ;
Bittencourt, Luiz F. ;
Geyer, Claudio F. R. .
ACM COMPUTING SURVEYS, 2024, 56 (04)
[9]  
Fallah Alireza, 2020, Personalized federated learning: A meta-learning approach
[10]   FedDC: Federated Learning with Non-IID Data via Local Drift Decoupling and Correction [J].
Gao, Liang ;
Fu, Huazhu ;
Li, Li ;
Chen, Yingwen ;
Xu, Ming ;
Xu, Cheng-Zhong .
2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2022, :10102-10111