Time series radiomics for the prediction of prostate cancer progression in patients on active surveillance

被引:22
作者
Sushentsev, Nikita [1 ]
Rundo, Leonardo [1 ,2 ]
Abrego, Luis [3 ]
Li, Zonglun [4 ]
Nazarenko, Tatiana [3 ,4 ]
Warren, Anne Y. [5 ]
Gnanapragasam, Vincent J. [6 ,7 ]
Sala, Evis [1 ,8 ]
Zaikin, Alexey [3 ,4 ]
Barrett, Tristan [1 ]
Blyuss, Oleg [9 ,10 ]
机构
[1] Univ Cambridge, Addenbrookes Hosp, Sch Clin Med, Dept Radiol, Cambridge Biomed Campus,Box 218, Cambridge CB2 0QQ, England
[2] Univ Salerno, Dept Informat & Elect Engn & Appl Math DIEM, Fisciano, SA, Italy
[3] UCL, Inst Womens Hlth, Dept Womens Canc, London, England
[4] UCL, Dept Math, London, England
[5] Cambridge Univ Hosp NHS Fdn Trust, Dept Pathol, Cambridge, England
[6] Cambridge Univ Hosp NHS Fdn Trust, Dept Urol, Cambridge, England
[7] Addenbrookes Hosp, Cambridge Urol Translat Res & Clin Trials Off, Cambridge Biomed Campus, Cambridge, England
[8] Univ Cambridge, Canc Res UK Cambridge Inst, Cambridge, England
[9] Queen Mary Univ London, Wolfson Inst Populat Hlth, London, England
[10] Lobachevsky Univ, Ctr Photon, Nizhnii Novgorod, Russia
基金
英国惠康基金; 英国工程与自然科学研究理事会;
关键词
Prostatic neoplasms; Magnetic resonance imaging; Artificial intelligence; PRECISE; MRI;
D O I
10.1007/s00330-023-09438-x
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Serial MRI is an essential assessment tool in prostate cancer (PCa) patients enrolled on active surveillance (AS). However, it has only moderate sensitivity for predicting histopathological tumour progression at follow-up, which is in part due to the subjective nature of its clinical reporting and variation among centres and readers. In this study, we used a long short-term memory (LSTM) recurrent neural network (RNN) to develop a time series radiomics (TSR) predictive model that analysed longitudinal changes in tumour-derived radiomic features across 297 scans from 76 AS patients, 28 with histopathological PCa progression and 48 with stable disease. Using leave-one-out cross-validation (LOOCV), we found that an LSTM-based model combining TSR and serial PSA density (AUC 0.86 [95% CI: 0.78-0.94]) significantly outperformed a model combining conventional delta-radiomics and delta-PSA density (0.75 [0.64-0.87]; p = 0.048) and achieved comparable performance to expert-performed serial MRI analysis using the Prostate Cancer Radiologic Estimation of Change in Sequential Evaluation (PRECISE) scoring system (0.84 [0.76-0.93]; p = 0.710). The proposed TSR framework, therefore, offers a feasible quantitative tool for standardising serial MRI assessment in PCa AS. It also presents a novel methodological approach to serial image analysis that can be used to support clinical decision-making in multiple scenarios, from continuous disease monitoring to treatment response evaluation.
引用
收藏
页码:3792 / 3800
页数:9
相关论文
共 33 条
  • [1] Breast lesion classification based on dynamic contrast-enhanced magnetic resonance images sequences with long short-term memory networks
    Antropova, Natalia
    Huynh, Benjamin
    Li, Hui
    Giger, Maryellen L.
    [J]. JOURNAL OF MEDICAL IMAGING, 2019, 6 (01)
  • [2] Certification in reporting multiparametric magnetic resonance imaging of the prostate: recommendations of a UK consensus meeting
    Barrett, Tristan
    Padhani, Anwar R.
    Patel, Amit
    Ahmed, Hashim U.
    Allen, Clare
    Bardgett, Harry
    Belfield, Jane
    Brizmohun Appayya, Mrishta
    Harding, Thomas
    Hoch, Ornella-Shanin
    Keanie, Julian Y.
    Liyanage, Sidath H.
    Papoutsaki, Marianthi-Vasiliki
    Punwani, Shonit
    Robinson, Mark J. C.
    Rajesh, Arumugam
    Stafurth, John N.
    Van derMeulen, Jan
    Richenberg, Jonathan
    [J]. BJU INTERNATIONAL, 2021, 127 (03) : 304 - 306
  • [3] The Emerging Role of MRI in Prostate Cancer Active Surveillance and Ongoing Challenges
    Barrett, Tristan
    Haider, Masoom A.
    [J]. AMERICAN JOURNAL OF ROENTGENOLOGY, 2017, 208 (01) : 131 - 139
  • [4] Bouaziz M, 2017, 2016 IEEE WORK SPOK
  • [5] MRI-derived PRECISE scores for predicting pathologically-confirmed radiological progression in prostate cancer patients on active surveillance
    Caglic, Iztok
    Sushentsev, Nikita
    Gnanapragasam, Vincent J.
    Sala, Evis
    Shaida, Nadeem
    Koo, Brendan C.
    Kozlov, Vasily
    Warren, Anne Y.
    Kastner, Christof
    Barrett, Tristan
    [J]. EUROPEAN RADIOLOGY, 2021, 31 (05) : 2696 - 2705
  • [6] ESUR/ESUI consensus statements on multi-parametric MRI for the detection of clinically significant prostate cancer: quality requirements for image acquisition, interpretation and radiologists' training
    de Rooij, Maarten
    Israel, Bas
    Tummers, Marcia
    Ahmed, Hashim U.
    Barrett, Tristan
    Giganti, Francesco
    Hamm, Bernd
    Logager, Vibeke
    Padhani, Anwar
    Panebianco, Valeria
    Puech, Philippe
    Richenberg, Jonathan
    Rouviere, Olivier
    Salomon, Georg
    Schoots, Ivo
    Veltman, Jeroen
    Villeirs, Geert
    Walz, Jochen
    Barentsz, Jelle O.
    [J]. EUROPEAN RADIOLOGY, 2020, 30 (10) : 5404 - 5416
  • [7] Giganti F, 2021, EUR UROL, V79, P560, DOI 10.1016/j.eururo.2021.01.016
  • [8] Prostate cancer measurements on serial MRI during active surveillance: it's time to be PRECISE
    Giganti, Francesco
    Stavrinides, Vasilis
    Stabile, Armando
    Osinibi, Elizabeth
    Orczyk, Clement
    Radtke, Jan Philipp
    Freeman, Alex
    Haider, Aiman
    Punwani, Shonit
    Allen, Clare
    Emberton, Mark
    Kirkham, Alex
    Moore, Caroline M.
    [J]. BRITISH JOURNAL OF RADIOLOGY, 2020, 93 (1116)
  • [9] Using prognosis to guide inclusion criteria, define standardised endpoints and stratify follow-up in active surveillance for prostate cancer
    Gnanapragasam, Vincent J.
    Barrett, Tristan
    Thankapannair, Vineetha
    Thurtle, David
    Rubio-Briones, Jose
    Dominguez-Escrig, Jose
    Bratt, Ola
    Statin, Par
    Muir, Kenneth
    Lophatananon, Artitaya
    [J]. BJU INTERNATIONAL, 2019, 124 (05) : 758 - 767
  • [10] Graves A, 2012, STUD COMPUT INTELL, V385, P1, DOI [10.1162/neco.1997.9.1.1, 10.1007/978-3-642-24797-2]