Model Predictive Control of Quadruped Robot Based on Reinforcement Learning

被引:8
作者
Zhang, Zhitong [1 ]
Chang, Xu [1 ]
Ma, Hongxu [1 ]
An, Honglei [1 ]
Lang, Lin [1 ]
机构
[1] Natl Univ Def Technol, Coll Intelligence Sci & Technol, Changsha 410073, Peoples R China
来源
APPLIED SCIENCES-BASEL | 2023年 / 13卷 / 01期
基金
中国博士后科学基金; 美国国家科学基金会;
关键词
model predictive control; reinforcement learning; parameter adaptive; quadruped robot;
D O I
10.3390/app13010154
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
For the locomotion control of a legged robot, both model predictive control (MPC) and reinforcement learning (RL) demonstrate powerful capabilities. MPC transfers the high-level task to the lower-level joint control based on the understanding of the robot and environment, model-free RL learns how to work through trial and error, and has the ability to evolve based on historical data. In this work, we proposed a novel framework to integrate the advantages of MPC and RL, we learned a policy for automatically choosing parameters for MPC. Unlike the end-to-end RL applications for control, our method does not need massive sampling data for training. Compared with the fixed parameters MPC, the learned MPC exhibits better locomotion performance and stability. The presented framework provides a new choice for improving the performance of traditional control.
引用
收藏
页数:13
相关论文
共 19 条
[1]  
Bledt G, 2017, IEEE INT C INT ROBOT, P4102, DOI 10.1109/IROS.2017.8206268
[2]  
Carlo J.D., 2018, P 2018 IEEERSJ INT C, P1
[3]  
Chang X, 2021, INT J CONTROL AUTOM, V19, P3776
[4]   Representation-Free Model Predictive Control for Dynamic Motions in Quadrupeds [J].
Ding, Yanran ;
Pandala, Abhishek ;
Li, Chuanzheng ;
Shin, Young-Ha ;
Park, Hae-Won .
IEEE TRANSACTIONS ON ROBOTICS, 2021, 37 (04) :1154-1171
[5]  
Farshidian Farbod, 2017, 2017 IEEE International Conference on Robotics and Automation (ICRA), P93, DOI 10.1109/ICRA.2017.7989016
[6]  
Haarnoja T., 2018, SOFT ACTOR CRITIC AL
[7]   Learning agile and dynamic motor skills for legged robots [J].
Hwangbo, Jemin ;
Lee, Joonho ;
Dosovitskiy, Alexey ;
Bellicoso, Dario ;
Tsounis, Vassilios ;
Koltun, Vladlen ;
Hutter, Marco .
SCIENCE ROBOTICS, 2019, 4 (26)
[8]  
Ioffe S, 2015, Proceedings of Machine Learning Research, P448, DOI DOI 10.48550/ARXIV.1502.03167
[9]  
Kimura H, 2002, 2002 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION, VOLS I-IV, PROCEEDINGS, P2228, DOI 10.1109/ROBOT.2002.1013563
[10]  
Kingma D.P., 2014, INT C LEARNING REPRE, DOI 10.48550/arXiv.1412.6980