A Novel CNN-LSTM Fusion-Based Intrusion Detection Method for Industrial Internet

被引:3
|
作者
Song, Jinhai [1 ]
Zhang, Zhiyong [1 ,2 ]
Zhao, Kejing [3 ]
Xue, Qinhai [1 ]
Brij B Gupta [4 ,5 ,6 ,7 ]
机构
[1] Henan Univ Sci & Technol, Coll Informat Engn, Luoyang, Peoples R China
[2] Henan Univ Sci & Technol, Luoyang, Peoples R China
[3] Henan Univ Sci & Technol, Sch Informat Engn, Luoyang, Peoples R China
[4] Asia Univ, Dept Comp Sci & Informat Engn, Taichung, Taiwan
[5] Lebanese Amer Univ, Beirut, Lebanon
[6] Univ Petr & Energy Studies UPES, Ctr Interdisciplinary Res, Dehra Dun, Uttarakhand, India
[7] Chandigarh Univ, UCRD, Chandigarh, India
基金
中国国家自然科学基金;
关键词
Industrial Intrusion Detection; Kernel Density Estimation; Long Short-Term Memory Network; One-Dimensional Convolution; Pearson Correlation Coefficient; NETWORK;
D O I
10.4018/IJISP.325232
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Industrial internet security incidents occur frequently, and it is very important to accurately and effectively detect industrial internet attacks. In this paper, a novel CNN-LSTM fusion model-based method is proposed to detect malicious behavior under industrial internet security. Firstly, the data distribution is analyzed with the help of kernel density estimation, and the Pearson correlation coefficient is used to select the strong correlation feature as the model input. The one-dimensional convolutional neural network and the long short-term memory network respectively extract the spatial sequence features of the data and then use the softmax function to complete the classification task. In order to verify the effectiveness of the model, it is evaluated on the NSL-KDD dataset and the GAS dataset, and experiments show that the model has a significant performance improvement over a single model. In the detection of industrial network traffic data, the accuracy rate of 97.09% and the recall rate of 90.84% are achieved.
引用
收藏
页数:18
相关论文
共 50 条
  • [1] A Novel Quench Detection Method Based on CNN-LSTM Model
    Zhou, Xiao
    Shi, Jing
    Gong, Kang
    Zhu, Changdong
    Hua, Jing
    Xu, Jun
    IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, 2021, 31 (05)
  • [2] Intrusion Detection Using Attention-Based CNN-LSTM Model
    Al-Omar, Ban
    Trabelsi, Zouheir
    ARTIFICIAL INTELLIGENCE APPLICATIONS AND INNOVATIONS, AIAI 2023, PT I, 2023, 675 : 515 - 526
  • [3] SafetyMed: A Novel IoMT Intrusion Detection System Using CNN-LSTM Hybridization
    Faruqui, Nuruzzaman
    Abu Yousuf, Mohammad
    Whaiduzzaman, Md
    Azad, A. K. M.
    Alyami, Salem A.
    Lio, Pietro
    Kabir, Muhammad Ashad
    Moni, Mohammad Ali
    ELECTRONICS, 2023, 12 (17)
  • [4] Distributed Deep CNN-LSTM Model for Intrusion Detection Method in IoT-Based Vehicles
    Alferaidi, Ali
    Yadav, Kusum
    Alharbi, Yasser
    Razmjooy, Navid
    Viriyasitavat, Wattana
    Gulati, Kamal
    Kautish, Sandeep
    Dhiman, Gaurav
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2022, 2022
  • [5] Intrusion Detection Mechanism for Large Scale Networks using CNN-LSTM
    Karanam, Lokesh
    Pattanaik, Kiran Kumar
    Aldmour, Rakan
    2020 13TH INTERNATIONAL CONFERENCE ON DEVELOPMENTS IN ESYSTEMS ENGINEERING (DESE 2020), 2020, : 323 - 328
  • [6] CNN-LSTM based Approach for DDoS Detection
    Alasmari, Tahani
    Eshmawi, Ala'
    Alshomrani, Adel
    Hsairi, Lobna
    2023 EIGHTH INTERNATIONAL CONFERENCE ON MOBILE AND SECURE SERVICES, MOBISECSERV, 2023,
  • [7] A hybrid CNN-LSTM approach for intelligent cyber intrusion detection system
    Bamber, Sukhvinder Singh
    Katkuri, Aditya Vardhan Reddy
    Sharma, Shubham
    Angurala, Mohit
    COMPUTERS & SECURITY, 2025, 148
  • [8] Abnormality Detection Method for Wind Turbine Bearings Based on CNN-LSTM
    Zhang, Fanghong
    Zhu, Yuze
    Zhang, Chuanjiang
    Yu, Peng
    Li, Qingan
    ENERGIES, 2023, 16 (07)
  • [9] A novel LightGBM-based industrial internet intrusion detection method
    Lv, Zhiqiang
    INTERNATIONAL JOURNAL OF COMPUTER APPLICATIONS IN TECHNOLOGY, 2023, 71 (03) : 208 - 216
  • [10] A novel method for video shot boundary detection using CNN-LSTM approach
    Abdelhalim Benoughidene
    Faiza Titouna
    International Journal of Multimedia Information Retrieval, 2022, 11 : 653 - 667