Histomorphometric evaluation of 3D printed graphene oxide-enriched poly(ε-caprolactone) scaffolds for bone regeneration

被引:8
|
作者
Alazab, Maha H. [1 ]
Abouelgeit, Salma A. [2 ]
Aboushelib, Moustafa N. [2 ]
机构
[1] Menoufia Univ, Menoufia Univ Hosp, Shibin Al Kawm, Egypt
[2] Alexandria Univ, Dent Biomat Dept, Alexandria, Egypt
关键词
Bone regeneration; Scaffolds; Graphene oxide; Poly( & epsilon; -caprolacone)polymer; 3D printing; PRP;
D O I
10.1016/j.heliyon.2023.e15844
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Objective: Restoring large boney defects using bone grafts alone is an unpredictable procedure. Biodegradable polymeric scaffolds suffer rapid biodegradation and lack sufficient osteoconductivity. The aim of this study was to histomorphometrically evaluate three-dimensional printed graphene oxide-enriched poly(e-caprolactone) (PCL) scaffolds for bone regeneration in a rabbit defect model using two different concentrations of graphene oxide. Basic characteristic properties and mount of new bone regeneration formation were evaluated.Methods: two concentrations of graphene oxide (1 and 3 wt%) were added to PCL scaffolds using hot blind technique while pure PCL scaffolds served as a control. Laboratory characterization included scanning electron microscopy (SEM), x-ray diffraction analysis (XRD), contact angle, internal porosity, in addition to density measurements. All scaffolds were subjected to biodegradation evaluation and cell cytotoxicity test. In vivo bone regeneration was evaluated in the tibia defect of a rabbit model by measuring the amount of new bone formation (n = 15, a = 0.05).Results: SEM images showed slight reduction in pore size and increase in filament width of scaffolds with increasing GO contents. However, the printed scaffolds matched well with the dimensions of the original design. XRD patterns revealed characteristic peaks identifying microstructure of scaffolds. Addition of GO increased crystallinity of the scaffolds. The contact angle and porosity readings indicated reduction in measurements with increased content of GO indicating improved wetting properties while the density followed an opposing pattern. Higher biodegradability values were associated with higher GO content resulting in acceleration of observed biodegradation. The results of cytotoxicity test showed reduction in cell viability with higher GO content. Bone regeneration was significantly enhanced for 1 wt% GO scaffolds compared to other groups as was evident by higher bone density observed in x-ray images and higher amount of new bone formation observed at different time intervals.Significance: Graphene oxide improved the physical and biological properties of PCL scaffolds and significantly enhanced new bone regeneration.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] Mechanical Properties of 3D Printed PLA Scaffolds for Bone Regeneration
    Kundreckaite, Paula
    Sesok, Andzela
    Stonkus, Rimantas
    Gaidulis, Gediminas
    Romanczuk-Ruszuk, Eliza
    Pauk, Jolanta
    ACTA MECHANICA ET AUTOMATICA, 2024, 18 (04) : 182 - 189
  • [22] 3D Printed Fe Scaffolds with HA Nanocoating for Bone Regeneration
    Yang, Chen
    Huan, Zhiguang
    Wang, Xiaoya
    Wu, Chengtie
    Chang, Jiang
    ACS BIOMATERIALS SCIENCE & ENGINEERING, 2018, 4 (02): : 608 - 616
  • [23] Biofabrication of 3D printed hydroxyapatite composite scaffolds for bone regeneration
    Kim, Yoontae
    Lee, Eun-Jin
    Davydov, Albert, V
    Frukhtbeyen, Stanislav
    Seppala, Jonathan E.
    Takagi, Shozo
    Chow, Laurence
    Alimperti, Stella
    BIOMEDICAL MATERIALS, 2021, 16 (04)
  • [24] 3D Printed Scaffolds with Controlled Release of Dexamethasone for Bone Regeneration
    Costa, P.
    Puga, A.
    Concheiro, A.
    Busch, D.
    van Griensven, M.
    Alvarez-Lorenzo, C.
    TISSUE ENGINEERING PART A, 2014, 20 : S56 - S57
  • [25] Composite scaffolds based on poly(ε-caprolactone) and functionalized aminated graphene for bone regeneration
    Stepanova, Mariia
    Solomakha, Olga
    Rabchinskii, Maxim
    Gofman, Iosif
    Nashchekina, Yulia
    Nashchekin, Alexey
    Inshakov, Egor
    Shevchenko, Natalia
    Korzhikova-Vlakh, Evgenia
    EMERGENT MATERIALS, 2024,
  • [26] Novel Application of 3D Scaffolds of Poly(E-Caprolactone)/Graphene as Osteoinductive Properties in Bone Defect
    Budi, Hendrik Setia
    Anitasari, Silvia
    Shen, Yung-Kang
    Tangwattanachuleeporn, Marut
    Nuraini, Prawati
    Setiabudi, Narendra Arya
    EUROPEAN JOURNAL OF DENTISTRY, 2023, 17 (03) : 790 - 796
  • [27] Novel Poly(e-caprolactone)/Graphene Scaffolds for Bone Cancer Treatment and Bone Regeneration
    Hou, Yanhao
    Wang, Weiguang
    Bartolo, Paulo
    3D PRINTING AND ADDITIVE MANUFACTURING, 2020, 7 (05) : 222 - 229
  • [28] 3D PRINTED IMMUNOMODULATORY SCAFFOLDS WITH CONTROLLED DRUG RELEASE FOR BONE REGENERATION
    Majrashi, Majed
    Ghaemmaghami, Amir
    Yang, Jing
    TISSUE ENGINEERING PART A, 2023, 29 (11-12) : 1162 - 1162
  • [29] In vitro characterization of 3D printed scaffolds aimed at bone tissue regeneration
    Boga, Joao C.
    Miguel, Sonia P.
    de Melo-Diogo, Duarte
    Mendonca, Antonio G.
    Louro, Ricardo O.
    Correia, Ilidio J.
    COLLOIDS AND SURFACES B-BIOINTERFACES, 2018, 165 : 207 - 218
  • [30] Fabrication of graphene/gelatin/chitosan/tricalcium phosphate 3D printed scaffolds for bone tissue regeneration applications
    Huigen Lu
    Xuekang Pan
    Minjie Hu
    Jianqiao Zhang
    Yefeng Yu
    Xuqi Hu
    Kai Jiang
    Applied Nanoscience, 2021, 11 : 335 - 346