Histomorphometric evaluation of 3D printed graphene oxide-enriched poly(ε-caprolactone) scaffolds for bone regeneration

被引:8
|
作者
Alazab, Maha H. [1 ]
Abouelgeit, Salma A. [2 ]
Aboushelib, Moustafa N. [2 ]
机构
[1] Menoufia Univ, Menoufia Univ Hosp, Shibin Al Kawm, Egypt
[2] Alexandria Univ, Dent Biomat Dept, Alexandria, Egypt
关键词
Bone regeneration; Scaffolds; Graphene oxide; Poly( & epsilon; -caprolacone)polymer; 3D printing; PRP;
D O I
10.1016/j.heliyon.2023.e15844
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Objective: Restoring large boney defects using bone grafts alone is an unpredictable procedure. Biodegradable polymeric scaffolds suffer rapid biodegradation and lack sufficient osteoconductivity. The aim of this study was to histomorphometrically evaluate three-dimensional printed graphene oxide-enriched poly(e-caprolactone) (PCL) scaffolds for bone regeneration in a rabbit defect model using two different concentrations of graphene oxide. Basic characteristic properties and mount of new bone regeneration formation were evaluated.Methods: two concentrations of graphene oxide (1 and 3 wt%) were added to PCL scaffolds using hot blind technique while pure PCL scaffolds served as a control. Laboratory characterization included scanning electron microscopy (SEM), x-ray diffraction analysis (XRD), contact angle, internal porosity, in addition to density measurements. All scaffolds were subjected to biodegradation evaluation and cell cytotoxicity test. In vivo bone regeneration was evaluated in the tibia defect of a rabbit model by measuring the amount of new bone formation (n = 15, a = 0.05).Results: SEM images showed slight reduction in pore size and increase in filament width of scaffolds with increasing GO contents. However, the printed scaffolds matched well with the dimensions of the original design. XRD patterns revealed characteristic peaks identifying microstructure of scaffolds. Addition of GO increased crystallinity of the scaffolds. The contact angle and porosity readings indicated reduction in measurements with increased content of GO indicating improved wetting properties while the density followed an opposing pattern. Higher biodegradability values were associated with higher GO content resulting in acceleration of observed biodegradation. The results of cytotoxicity test showed reduction in cell viability with higher GO content. Bone regeneration was significantly enhanced for 1 wt% GO scaffolds compared to other groups as was evident by higher bone density observed in x-ray images and higher amount of new bone formation observed at different time intervals.Significance: Graphene oxide improved the physical and biological properties of PCL scaffolds and significantly enhanced new bone regeneration.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Engineered 3D printed poly(ε-caprolactone)/graphene scaffolds for bone tissue engineering
    Wang, Weiguang
    Passarini Junior, Jose Roberto
    Lopes Nalesso, Paulo Roberto
    Musson, David
    Cornish, Jillian
    Mendonca, Fernanda
    Caetano, Guilherme Ferreira
    Bartolo, Paulo
    MATERIALS SCIENCE AND ENGINEERING C-MATERIALS FOR BIOLOGICAL APPLICATIONS, 2019, 100 : 759 - 770
  • [2] 3D-printed cryomilled poly(ε-caprolactone)/graphene composite scaffolds for bone tissue regeneration
    Dias, Daniela
    Vale, Ana C.
    Cunha, Eunice P. F.
    C. Paiva, Maria
    Reis, Rui L.
    Vaquette, Cedryck
    Alves, Natalia M.
    JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART B-APPLIED BIOMATERIALS, 2021, 109 (07) : 961 - 972
  • [3] Graphene oxide-enriched poly(ε-caprolactone) electrospun nanocomposite scaffold for bone tissue engineering applications
    Mohammadi, Sepideh
    Shafiei, Seyedeh Sara
    Asadi-Eydivand, Mitra
    Ardeshir, Mahmoud
    Solati-Hashjin, Mehran
    JOURNAL OF BIOACTIVE AND COMPATIBLE POLYMERS, 2017, 32 (03) : 325 - 342
  • [4] Incorporation of graphene oxide into poly(ε-caprolactone) 3D printed fibrous scaffolds improves their antimicrobial properties
    Melo, Sofia F.
    Neves, Sara C.
    Pereira, Andreia T.
    Borges, Ines
    Granja, Pedro L.
    Magalhaes, Fernao D.
    Goncalves, Ines C.
    MATERIALS SCIENCE AND ENGINEERING C-MATERIALS FOR BIOLOGICAL APPLICATIONS, 2020, 109
  • [5] Green reduced graphene oxide functionalized 3D printed scaffolds for bone tissue regeneration
    Cabral, Catia S. D.
    Miguel, Sonia P.
    de Melo-Diogo, Duarte
    Louro, Ricardo O.
    Correia, Ilidio J.
    CARBON, 2019, 146 : 513 - 523
  • [6] 3D printed biocompatible graphene oxide, attapulgite, and collagen composite scaffolds for bone regeneration
    Qin, Wen
    Li, Chenkai
    Liu, Chun
    Wu, Siyu
    Liu, Jun
    Ma, Jiayi
    Chen, Wenyang
    Zhao, Hongbin
    Zhao, Xiubo
    JOURNAL OF BIOMATERIALS APPLICATIONS, 2022, 36 (10) : 1838 - 1851
  • [7] 3D-Printed Poly(ε-caprolactone)/Graphene Scaffolds Activated with P1-Latex Protein for Bone Regeneration
    Caetano, Guilherme Ferreira
    Wang, Weiguang
    Chiang, Wei-Hung
    Cooper, Glen
    Diver, Carl
    Blaker, Jonny James
    Frade, Marco Andrey
    Bartolo, Paulo
    3D PRINTING AND ADDITIVE MANUFACTURING, 2018, 5 (02) : 127 - 137
  • [8] 3D printed poly(lactic acid)/poly(ε-caprolactone)/graphene ε-caprolactone)/graphene nanocomposite scaffolds for peripheral nerve tissue engineering
    Gerdefaramarzi, Reyhane Soltani
    Ebrahimian-Hosseinabadi, Mehdi
    Khodaei, Mohammad
    ARABIAN JOURNAL OF CHEMISTRY, 2024, 17 (09)
  • [9] 3D poly-ε-caprolactone/graphene porous scaffolds for bone tissue engineering
    Huang, Huei-Yu
    Fan, Fang-Yu
    Shen, Yung-Kang
    Wang, Chia-Hsien
    Huang, Yuen-Tzu
    Chern, Ming-Jyh
    Wang, Yen-Hsiang
    Wang, Liping
    COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2020, 606
  • [10] Vascularized 3D printed scaffolds for promoting bone regeneration
    Yan, Yufei
    Chen, Hao
    Zhang, Hongbo
    Guo, Changjun
    Yang, Kai
    Chen, Kaizhe
    Cheng, Ruoyu
    Qian, Niandong
    Sandler, Niklas
    Zhang, Yu Shrike
    Shen, Haokai
    Qi, Jin
    Cui, Wenguo
    Deng, Lianfu
    BIOMATERIALS, 2019, 190 : 97 - 110