New error bounds for linear complementarity problems for BS-matrices

被引:0
作者
Wang, Feng [1 ]
Yan, Wenwen [1 ]
Zhao, Yingxia [1 ]
Zhao, Pengcheng [1 ]
机构
[1] Guizhou Minzu Univ, Coll Data Sci & Informat Engn, Guiyang 550025, Guizhou, Peoples R China
关键词
Linear complementarity problems; Error bounds; Infinity norm; SDD matrices; B-S-matrices; Singular values;
D O I
10.1007/s40314-023-02306-w
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Some inequalities for elements relation of strictly diagonally dominant M-matrix and its inverse are given, and new upper bounds of the infinity norm for the inverse of strictly diagonally dominant M-matrix are presented. We apply these new bounds to linear comple-mentarity problems (LCPs) and obtain an alternative error bound for LCPs of B-S-matrices. A lower bound for the smallest singular value is also provided. Theoretical analysis and numerical examples show the validity of the results.
引用
收藏
页数:17
相关论文
共 24 条
[1]  
Berman A., 1994, Nonnegative Matrices in the Mathematical Sciences, DOI DOI 10.1137/1.9781611971262
[2]   Computation of error bounds for P-matrix linear complementarity problems [J].
Chen, XJ ;
Xiang, SH .
MATHEMATICAL PROGRAMMING, 2006, 106 (03) :513-525
[3]   An upper bound for ∥ A-1 ∥∞ of strictly diagonally dominant M-matrices [J].
Cheng, Guang-Hui ;
Huang, Ting-Hu .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2007, 426 (2-3) :667-673
[4]  
Cottle RW., 1992, The linear complementarity problem
[5]   Minimal sets alternative to minimal Gersgorin sets [J].
Cvetkovic, Lj. ;
Pena, J. M. .
APPLIED NUMERICAL MATHEMATICS, 2010, 60 (04) :442-451
[6]   Error bounds for linear complementarity problems involving BS-matrices [J].
Garcia-Esnaola, M. ;
Pena, J. M. .
APPLIED MATHEMATICS LETTERS, 2012, 25 (10) :1379-1383
[7]   Error bounds for linear complementarity problems for B-matrices [J].
Garcia-Esnaola, M. ;
Pena, J. M. .
APPLIED MATHEMATICS LETTERS, 2009, 22 (07) :1071-1075
[8]  
HORN R. A., 1991, Topics in Matrix Analysis, 1991
[9]  
Horn RA., 2012, Matrix Analysis, DOI [10.1017/CBO9781139020411, DOI 10.1017/CBO9781139020411]
[10]   Estimation of ∥A-1∥∞ and the smallest singular value [J].
Huang, Ting-Zhu .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2008, 55 (06) :1075-1080