Optimal state manipulation for a two-qubit system driven by coherent and incoherent controls

被引:13
作者
Morzhin, Oleg V. [1 ,2 ]
Pechen, Alexander N. [1 ,2 ]
机构
[1] Russian Acad Sci, Steklov Math Inst, Dept Math Methods Quantum Technol, 8 Gubkina Str, Moscow 119991, Russia
[2] Univ Sci & Technol MISIS, Quantum Engn Res & Educ Ctr, 4 Leninskiy Prosp, Moscow 119991, Russia
基金
俄罗斯科学基金会;
关键词
Quantum control; Two-qubit open quantum system; Coherent control; Incoherent control; Pontryagin maximum principle; Gradient projection methods; QUANTUM SYSTEM; DENSITY-MATRICES; MAXIMIZATION; DECOHERENCE;
D O I
10.1007/s11128-023-03946-x
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Optimal control of two-qubit quantum systems attracts high interest due to applications ranging from two-qubit gate generation to optimization of receiver for transferring coherence matrices along spin chains. State preparation and manipulation are among important tasks to study for such systems. Typically coherent control, e.g., a shaped laser pulse, is used to manipulate two-qubit systems. However, the environment can also be used-as an incoherent control resource. In this article, we consider optimal state manipulation for a two-qubit system whose dynamics is governed by the Gorini-Kossakowski-Sudarshan-Lindblad master equation, where coherent control enters into the Hamiltonian and incoherent control into both the Hamiltonian (via Lamb shift) and the superoperator of dissipation. We exploit two physically different classes of interaction with coherent control and optimize the Hilbert-Schmidt overlap between final and target density matrices, including optimization of its steering to a given value. We find the conditions when zero coherent and incoherent controls satisfy the Pontryagin maximum principle and, in addition, when they form a stationary point of the objective functional. Moreover, we find a case when this stationary point provides the globally minimal value of the overlap. Using upper and lower bounds for the overlap, we develop one- and two-step gradient projection methods operating with functional controls.
引用
收藏
页数:26
相关论文
共 86 条
[1]   An efficient quantum jump method for coherent energy transfer dynamics in photosynthetic systems under the influence of laser fields [J].
Ai, Qing ;
Fan, Yuan-Jia ;
Jin, Bih-Yaw ;
Cheng, Yuan-Chung .
NEW JOURNAL OF PHYSICS, 2014, 16
[2]   Optimal control of two qubits via a single cavity drive in circuit quantum electrodynamics [J].
Allen, Joseph L. ;
Kosut, Robert ;
Joo, Jaewoo ;
Leek, Peter ;
Ginossar, Eran .
PHYSICAL REVIEW A, 2017, 95 (04)
[3]  
ANTIPIN AS, 1994, DIFF EQUAT+, V30, P1365
[4]   Quantum supremacy using a programmable superconducting processor [J].
Arute, Frank ;
Arya, Kunal ;
Babbush, Ryan ;
Bacon, Dave ;
Bardin, Joseph C. ;
Barends, Rami ;
Biswas, Rupak ;
Boixo, Sergio ;
Brandao, Fernando G. S. L. ;
Buell, David A. ;
Burkett, Brian ;
Chen, Yu ;
Chen, Zijun ;
Chiaro, Ben ;
Collins, Roberto ;
Courtney, William ;
Dunsworth, Andrew ;
Farhi, Edward ;
Foxen, Brooks ;
Fowler, Austin ;
Gidney, Craig ;
Giustina, Marissa ;
Graff, Rob ;
Guerin, Keith ;
Habegger, Steve ;
Harrigan, Matthew P. ;
Hartmann, Michael J. ;
Ho, Alan ;
Hoffmann, Markus ;
Huang, Trent ;
Humble, Travis S. ;
Isakov, Sergei V. ;
Jeffrey, Evan ;
Jiang, Zhang ;
Kafri, Dvir ;
Kechedzhi, Kostyantyn ;
Kelly, Julian ;
Klimov, Paul V. ;
Knysh, Sergey ;
Korotkov, Alexander ;
Kostritsa, Fedor ;
Landhuis, David ;
Lindmark, Mike ;
Lucero, Erik ;
Lyakh, Dmitry ;
Mandra, Salvatore ;
McClean, Jarrod R. ;
McEwen, Matthew ;
Megrant, Anthony ;
Mi, Xiao .
NATURE, 2019, 574 (7779) :505-+
[5]   Reservoir engineering using quantum optimal control for qubit reset [J].
Basilewitsch, Daniel ;
Cosco, Francesco ;
Lo Gullo, Nicolino ;
Mottonen, Mikko ;
Ala-Nissila, Tapio ;
Koch, Christiane P. ;
Maniscalco, Sabrina .
NEW JOURNAL OF PHYSICS, 2019, 21 (09)
[6]   Transfer of zero-order coherence matrix along spin-1/2 chain [J].
Bochkin, G. A. ;
Fel'dman, E. B. ;
Lazarev, I. D. ;
Pechen, A. N. ;
Zenchuk, A., I .
QUANTUM INFORMATION PROCESSING, 2022, 21 (07)
[7]  
Bonnard B., 2012, OPTIMAL CONTROL APPL, V5
[8]   Introduction to the Pontryagin Maximum Principle for Quantum Optimal Control [J].
Boscain, U. ;
Sigalotti, M. ;
Sugny, D. .
PRX QUANTUM, 2021, 2 (03)
[9]   Control of quantum phenomena: past, present and future [J].
Brif, Constantin ;
Chakrabarti, Raj ;
Rabitz, Herschel .
NEW JOURNAL OF PHYSICS, 2010, 12
[10]   Operator Methods of the Maximum Principle in Problems of Optimization of Quantum Systems [J].
Buldaev, Alexander ;
Kazmin, Ivan .
MATHEMATICS, 2022, 10 (03)