An Improved Method for Cross-Domain Pedestrian Re-identification

被引:0
|
作者
Zou, Yue [1 ]
Yang, Xinmei [1 ]
Fu, Yujing [1 ]
Wu, Yunshu [1 ]
机构
[1] Univ Elect Sci & Technol China, Sch Optoelect Sci & Engn, Chengdu, Sichuan, Peoples R China
关键词
Component; Domain adaptation; Human parsing; Semantic segmentation; Clustering;
D O I
10.1007/978-981-19-7184-6_30
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Cross-domain pedestrian re-identification (ReID) aims to transfer a model trained on a certain dataset to another unlabeled dataset for testing, which has good robustness. There are two main ways to achieve this so far, one of which is based on generative adversarial network, which aims to let the source domain samples have the style characteristics of the target domain samples, so that reducing the difference in feature distribution between the two domains. The other one is domain adaptation, by mapping the source domain and target domain samples to the same feature space and make the distance in the space as close as possible. This article discusses the reasons for the weak generalization ability of cross-domain models from the macro- and micro-perspectives. Firstly, from the perspective of macro, according to the human parsing model CE2P and the semantic segmentation model DeepLabv3+, a background segmentation method is proposed. When testing on large differences between two domains such as Market-1501 and MSMT17, the average accuracy of mAP has increased by 1-2%, and the first hit rate top-1 has increased by 3-5%, but it has decreased on small differences between two domains such as Market-1501 and DukeMTMC. Secondly, from the perspective of micro, we combine the advantages of SpCL and cluster contrast, and the labeled samples of the source domain are used to guide the unlabeled samples of the target domain to train. Besides, we select the hardest three samples saved in last epoch when updating, according to the experimental results, compared with the hardest sample in cluster contrast, the MAP and top-1 have better results in three datasets. Finally, we combine with the background segmentation method when testing on the MSMT17, the MAP has increased 0.6%, and top-1 has increased 0.9%. Although the development of unsupervised pedestrian re-recognition is very hot, and the result is close to supervised pedestrian re-recognition, when the model performance reaches to a commanding height, it is more difficult to be improved. However, on the basis of unsupervised, domain adaptation only needs to add the source samples, and it is easy to be improved for more than 2%, so the domain adaptive method still has a larger application prospect.
引用
收藏
页码:351 / 367
页数:17
相关论文
共 50 条
  • [1] Pedestrian Re-Identification and Tracking Algorithm Based on Cross-Domain Adaptation
    Dong, Ting
    Samonte, AMary Jane C.
    TRAITEMENT DU SIGNAL, 2024, 41 (05) : 2415 - 2424
  • [2] Cross-domain unsupervised pedestrian re-identification based on multi-view decomposition
    Xiaofeng Yang
    Zihao Zhou
    Qianshan Wang
    Zhiwei Wang
    Xi Li
    Haifang Li
    Multimedia Tools and Applications, 2022, 81 : 39387 - 39408
  • [3] Cross-domain unsupervised pedestrian re-identification based on multi-view decomposition
    Yang, Xiaofeng
    Zhou, Zihao
    Wang, Qianshan
    Wang, Zhiwei
    Li, Xi
    Li, Haifang
    MULTIMEDIA TOOLS AND APPLICATIONS, 2022, 81 (27) : 39387 - 39408
  • [4] Study of cross-domain person re-identification based on DCGAN
    Wei Fang
    Weinan Yi
    Lin Pang
    Victor S. Sheng
    Multimedia Tools and Applications, 2022, 81 : 36551 - 36565
  • [5] A Part Invariance Network for Cross-Domain Person Re-identification
    Wan, Shouhong
    Zhang, Peiyi
    Jin, Peiquan
    Ding, Pengcheng
    2021 IEEE 33RD INTERNATIONAL CONFERENCE ON TOOLS WITH ARTIFICIAL INTELLIGENCE (ICTAI 2021), 2021, : 575 - 581
  • [6] Adaptive Transfer Network for Cross-Domain Person Re-Identification
    Liu, Jiawei
    Zha, Zheng-Jun
    Chen, Di
    Hong, Richang
    Wang, Meng
    2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, : 7195 - 7204
  • [7] Human-in-the-loop cross-domain person re-identification
    Delussu, Rita
    Putzu, Lorenzo
    Fumera, Giorgio
    EXPERT SYSTEMS WITH APPLICATIONS, 2023, 226
  • [8] Cross-domain Latent Space Projection for Person Re-identification
    Pu, Nan
    Wu, Song
    Qian, Li
    Xiao, Guoqiang
    NINTH INTERNATIONAL CONFERENCE ON GRAPHIC AND IMAGE PROCESSING (ICGIP 2017), 2018, 10615
  • [9] Generalizable Metric Network for Cross-Domain Person Re-Identification
    Qi, Lei
    Liu, Ziang
    Shi, Yinghuan
    Geng, Xin
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2024, 34 (10) : 9039 - 9052
  • [10] PROXY TASK LEARNING FOR CROSS-DOMAIN PERSON RE-IDENTIFICATION
    Huang, Houjing
    Chen, Xiaotang
    Huang, Kaiqi
    2020 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO (ICME), 2020,