Overcoming the Electrode Challenges of High-Temperature Proton Exchange Membrane Fuel Cells

被引:51
作者
Meyer, Quentin [1 ]
Yang, Chujie [2 ]
Cheng, Yi [2 ]
Zhao, Chuan [1 ]
机构
[1] Univ New South Wales, Sch Chem, Sydney, NSW 2052, Australia
[2] Cent South Univ, Hunan Prov Key Lab Nonferrous Value Added Met, Changsha 410083, Hunan, Peoples R China
基金
澳大利亚研究理事会; 中国国家自然科学基金;
关键词
High-temperature proton exchange membrane fuel cells; Platinum catalysts; Platinum-group metal-free catalysts; Phosphate-tolerant electrode; OXYGEN REDUCTION REACTION; ACID DOPED POLYBENZIMIDAZOLE; GAS-DIFFUSION ELECTRODE; N-C CATALYSTS; FUNCTIONALIZED CARBON NANOTUBES; FE-N/C ELECTROCATALYSTS; PHOSPHORIC-ACID; HIGH-PERFORMANCE; COMPOSITE MEMBRANES; MICROPOROUS LAYER;
D O I
10.1007/s41918-023-00180-y
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Proton exchange membrane fuel cells (PEMFCs) are becoming a major part of a greener and more sustainable future. However, the costs of high-purity hydrogen and noble metal catalysts alongside the complexity of the PEMFC system severely hamper their commercialization. Operating PEMFCs at high temperatures (HT-PEMFCs, above 120 degrees C) brings several advantages, such as increased tolerance to contaminants, more affordable catalysts, and operations without liquid water, hence considerably simplifying the system. While recent progresses in proton exchange membranes for HT-PEMFCs have made this technology more viable, the HT-PEMFC viscous acid electrolyte lowers the active site utilization by unevenly diffusing into the catalyst layer while it acutely poisons the catalytic sites. In recent years, the synthesis of platinum group metal (PGM) and PGM-free catalysts with higher acid tolerance and phosphate-promoted oxygen reduction reaction, in conjunction with the design of catalyst layers with improved acid distribution and more triple-phase boundaries, has provided great opportunities for more efficient HT-PEMFCs. The progress in these two interconnected fields is reviewed here, with recommendations for the most promising routes worthy of further investigation. Using these approaches, the performance and durability of HT-PEMFCs will be significantly improved.
引用
收藏
页数:40
相关论文
共 350 条
[1]   Polybenzimidazole-Based High-Temperature Polymer Electrolyte Membrane Fuel Cells: New Insights and Recent Progress [J].
Aili, David ;
Henkensmeier, Dirk ;
Martin, Santiago ;
Singh, Bhupendra ;
Hu, Yang ;
Jensen, Jens Oluf ;
Cleemann, Lars N. ;
Li, Qingfeng .
ELECTROCHEMICAL ENERGY REVIEWS, 2020, 3 (04) :793-845
[2]   Exceptional durability enhancement of PA/PBI based polymer electrolyte membrane fuel cells for high temperature operation at 200 °C [J].
Aili, David ;
Zhang, Jin ;
Jakobsen, Mark Tonny Dalsgaard ;
Zhu, Haijin ;
Yang, Tianyu ;
Liu, Jian ;
Forsyth, Maria ;
Pan, Chao ;
Jensen, Jens Oluf ;
Cleemann, Lars Nilausen ;
Jiang, San Ping ;
Li, Qingfeng .
JOURNAL OF MATERIALS CHEMISTRY A, 2016, 4 (11) :4019-4024
[3]   Economic and Environmental Prospects for Battery Electric- and Fuel Cell Vehicles: A Review [J].
Ajanovic, A. ;
Haas, R. .
FUEL CELLS, 2019, 19 (05) :515-529
[4]   Preparation of Nonprecious Metal Electrocatalysts for the Reduction of Oxygen Using a Low-Temperature Sacrificial Metal [J].
Al-Zoubi, Talha ;
Zhou, Yu ;
Yin, Xi ;
Janicek, Blanka ;
Sun, Chengjun ;
Schulz, Charles E. ;
Zhang, Xiaohui ;
Gewirth, Andrew A. ;
Huang, Pinshane ;
Zelenay, Piotr ;
Yang, Hong .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2020, 142 (12) :5477-5481
[5]   Proton-conducting membranes based on benzimidazole polymers for high-temperature PEM fuel cells. A chemical quest [J].
Antonio Asensio, Juan ;
Sanchez, Eduardo M. ;
Gomez-Romero, Pedro .
CHEMICAL SOCIETY REVIEWS, 2010, 39 (08) :3210-3239
[6]   A Review of The Methanol Economy: The Fuel Cell Route [J].
Araya, Samuel Simon ;
Liso, Vincenzo ;
Cui, Xiaoti ;
Li, Na ;
Zhu, Jimin ;
Sahlin, Simon Lennart ;
Jensen, Soren Hojgaard ;
Nielsen, Mads Pagh ;
Kaer, Soren Knudsen .
ENERGIES, 2020, 13 (03)
[7]   A comprehensive review of PBI-based high temperature PEM fuel cells [J].
Araya, Samuel Simon ;
Zhou, Fan ;
Liso, Vincenzo ;
Sahlin, Simon Lennart ;
Vang, Jakob Rabjerg ;
Thomas, Sobi ;
Gao, Xin ;
Jeppesen, Christian ;
Kaer, Soren Knudsen .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2016, 41 (46) :21310-21344
[8]   Spatially and temporally resolved monitoring of doping polybenzimidazole membranes with phosphoric acid [J].
Arslan, Funda ;
Bohm, Thomas ;
Kerres, Jochen ;
Thiele, Simon .
JOURNAL OF MEMBRANE SCIENCE, 2021, 625
[9]   Synergistically integrated phosphonated poly(pentafluorostyrene) for fuel cells [J].
Atanasov, Vladimir ;
Lee, Albert S. ;
Park, Eun Joo ;
Maurya, Sandip ;
Baca, Ehren D. ;
Fujimoto, Cy ;
Hibbs, Michael ;
Matanovic, Ivana ;
Kerres, Jochen ;
Kim, Yu Seung .
NATURE MATERIALS, 2021, 20 (03) :370-+
[10]   Phosphonic acid functionalized poly(pentafluorostyrene) as polyelectrolyte membrane for fuel cell application [J].
Atanasov, Vladimir ;
Oleynikov, Andrey ;
Xia, Jiabing ;
Lyonnard, Sandrine ;
Kerres, Jochen .
JOURNAL OF POWER SOURCES, 2017, 343 :364-372