Backpropagation through signal temporal logic specifications: Infusing logical structure into gradient-based methods

被引:24
作者
Leung, Karen [1 ]
Arechiga, Nikos [2 ]
Pavone, Marco [1 ]
机构
[1] Stanford Univ, 496 Lomita Mall,Rm 261, Stanford, CA 94305 USA
[2] Toyota Res Inst, Los Altos, CA USA
关键词
Signal Temporal Logic; backpropagation; computation graphs; gradient-based methods;
D O I
10.1177/02783649221082115
中图分类号
TP24 [机器人技术];
学科分类号
080202 ; 1405 ;
摘要
This paper presents a technique, named STLCG, to compute the quantitative semantics of Signal Temporal Logic (STL) formulas using computation graphs. STLCG provides a platform which enables the incorporation of logical specifications into robotics problems that benefit from gradient-based solutions. Specifically, STL is a powerful and expressive formal language that can specify spatial and temporal properties of signals generated by both continuous and hybrid systems. The quantitative semantics of STL provide a robustness metric, that is, how much a signal satisfies or violates an STL specification. In this work, we devise a systematic methodology for translating STL robustness formulas into computation graphs. With this representation, and by leveraging off-the-shelf automatic differentiation tools, we are able to efficiently backpropagate through STL robustness formulas and hence enable a natural and easy-to-use integration of STL specifications with many gradient-based approaches used in robotics. Through a number of examples stemming from various robotics applications, we demonstrate that STLCG is versatile, computationally efficient, and capable of incorporating human-domain knowledge into the problem formulation.
引用
收藏
页码:356 / 370
页数:15
相关论文
共 27 条
[1]  
Adel T, 2018, PR MACH LEARN RES, V80
[2]  
Asarin A., 2012, Proc. of RV 2011, P147, DOI [DOI 10.1007/978-3-642-29860-8_12, DOI 10.1007/978-3-642-29860-812]
[3]  
Baier C, 2008, PRINCIPLES OF MODEL CHECKING, P1
[4]  
Bartocci Ezio, 2018, Lectures on Runtime. Verification Introductory and Advanced Topics. LNCS 10457, P135, DOI 10.1007/978-3-319-75632-5_5
[5]  
Doersch C., 2016, arXiv
[6]  
Fainekos GE, 2012, P AMER CONTR CONF, P3567
[7]   Temporal logic motion planning for dynamic robots [J].
Fainekos, Georgios E. ;
Girard, Antoine ;
Kress-Gazit, Hadas ;
Pappas, George J. .
AUTOMATICA, 2009, 45 (02) :343-352
[8]   LTLMoP: Experimenting with Language, Temporal Logic and Robot Control [J].
Finucane, Cameron ;
Jing, Gangyuan ;
Kress-Gazit, Hadas .
IEEE/RSJ 2010 INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS 2010), 2010, :1988-1993
[9]  
Gers FA, 1999, IEE CONF PUBL, P850, DOI [10.1049/cp:19991218, 10.1162/089976600300015015]
[10]  
Hochreiter S, 1997, NEURAL COMPUT, V9, P1735, DOI [10.1162/neco.1997.9.1.1, 10.1007/978-3-642-24797-2]