Hypoellipticity and Parabolic Hypoellipticity of Nonlocal Operators under Hormander's Condition

被引:1
作者
Ren, Jiagang [1 ]
Zhang, Hua [2 ]
机构
[1] Sun Yat Sen Univ, Sch Math, Guangzhou 510275, Guangdong, Peoples R China
[2] Jiangxi Univ Finance & Econ, Sch Stat, Nanchang 330013, Jiangxi, Peoples R China
基金
中国国家自然科学基金;
关键词
Hypoellipticity; Parabolic hypoellipticity; Hormander's condition; Stochastic differential equations; Multiplicative Levy noises; Poisson functional; Dirichlet form; Gradient; Carre du champ; FUNDAMENTAL-SOLUTIONS; SMOOTH DENSITIES; JUMPS; EXISTENCE; SDES;
D O I
10.1007/s11118-022-09997-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we prove the hypoellipticity and parabolic hypoellipticity of nonlocal operators under Hormander's condition. One key step in the proof is to obtain an off-diagonal small time estimate of the densities of the processes associated to these operators. To this end, we use a new version of Malliavin calculus on the Poisson space, namely the lent particle method, recently developed by Bouleau and Denis.
引用
收藏
页码:1051 / 1078
页数:28
相关论文
共 23 条
[1]  
Bichteler K., 1987, STOCHASTICS MONOGRAP, V2
[2]   CALCULATION OF STOCHASTIC VARIATIONS AND PROCESSES WITH JUMPS [J].
BISMUT, JM .
ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1983, 63 (02) :147-235
[3]  
Bouleau N., 2015, Probability Theory and Stochastic Modelling, V76
[4]  
BOULEAU N, 1991, DIRICHLET FORMS ANAL
[5]   Iteration of the Lent Particle Method for Existence of Smooth Densities of Poisson Functionals [J].
Bouleau, Nicolas ;
Denis, Laurent .
POTENTIAL ANALYSIS, 2013, 38 (01) :169-205
[6]   Application of the lent particle method to Poisson-driven SDEs [J].
Bouleau, Nicolas ;
Denis, Laurent .
PROBABILITY THEORY AND RELATED FIELDS, 2011, 151 (3-4) :403-433
[7]   Energy image density property and the lent particle method for Poisson measures [J].
Bouleau, Nicolas ;
Denis, Laurent .
JOURNAL OF FUNCTIONAL ANALYSIS, 2009, 257 (04) :1144-1174
[8]  
Carlen E. A., 1990, Stochastics, Algebra and Analysis in Classical and Quantum Dynamics (Marseille, 1988), V59, P63
[9]  
Ishikawa Y., 2013, DEGRUYTER STUDIES MA, V54
[10]  
Komatsu T, 2001, J. Differ. Equ. Appl., V2