Harmonic Bloch space on the real hyperbolic ball

被引:0
作者
Ureyen, A. Ersin [1 ]
机构
[1] Eskisehir Tech Univ, Fac Sci, Dept Math, TR-26470 Eskisehir, Turkiye
关键词
Real hyperbolic ball; Hyperbolic harmonic function; Bloch space; Bergman projection; Atomic decomposition; UNIT BALL; REPRODUCING KERNEL;
D O I
10.1007/s43034-024-00335-y
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the Bloch and the little Bloch spaces of harmonic functions on the real hyperbolic ball. We show that the Bergman projections from L infinity ( B ) \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L<^>\infty ({\mathbb {B}})$$\end{document} to B \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {B}}$$\end{document} , and from C 0 ( B ) \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C_0({\mathbb {B}})$$\end{document} to B 0 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {B}}_0$$\end{document} are onto. We verify that the dual space of the hyperbolic harmonic Bergman space B alpha 1 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {B}}<^>1_\alpha $$\end{document} is B \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {B}}$$\end{document} and its predual is B 0 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {B}}_0$$\end{document} . Finally, we obtain atomic decompositions of Bloch functions as series of Bergman reproducing kernels.
引用
收藏
页数:24
相关论文
共 24 条
  • [1] Axler S., 2001, GRAD TEXT M, V137, DOI 10.1007/978-1-4757-8137-3
  • [2] Choe B.R., 2007, OCAMI Stud., V2, P11
  • [3] Positive Schatten class Toeplitz operators on the ball
    Choe, Boo Rim
    Koo, Hyungwoon
    Lee, Young Joo
    [J]. STUDIA MATHEMATICA, 2008, 189 (01) : 65 - 90
  • [4] Coifman R.R., 1980, ASTERISQUE, V77, P11
  • [5] Weighted Harmonic Bloch Spaces on the Ball
    Dogan, Omer Faruk
    Ureyen, A. Ersin
    [J]. COMPLEX ANALYSIS AND OPERATOR THEORY, 2018, 12 (05) : 1143 - 1177
  • [6] Harmonic Besov spaces on the ball
    Gergun, Secil
    Kaptanoglu, H. Turgay
    Ureyen, A. Ersin
    [J]. INTERNATIONAL JOURNAL OF MATHEMATICS, 2016, 27 (09)
  • [7] Harmonic functions on the real hyperbolic ball II Hardy-Sobolev and Lipschitz spaces
    Grellier, S
    Jaming, P
    [J]. MATHEMATISCHE NACHRICHTEN, 2004, 268 : 50 - 73
  • [8] Jaming P., 1998, THESIS U ORLEANS
  • [9] Jaming P., 1999, COLLOQ MATH-WARSAW, V80, P63
  • [10] Harmonic Bergman functions on the unit ball in Rn
    Jevtic, M
    Pavlovic, M
    [J]. ACTA MATHEMATICA HUNGARICA, 1999, 85 (1-2) : 81 - 96