Quasi-shadowing for Zd-actions

被引:0
作者
Pan, Juan [1 ]
Ren, Xian Kun [2 ]
Zhou, Yun Hua [2 ]
机构
[1] Chongqing Technol & Business Univ, Sch Math & Stat, Chongqing 400067, Peoples R China
[2] Chongqing Univ, Coll Math & Stat, Chongqing 401331, Peoples R China
关键词
Quasi-shadowing; Z(d)-action; non-uniformly partially hyperbolic; ergodic measure; PERIODIC POINTS; DIFFEOMORPHISMS; HYPERBOLICITY; ENTROPY; AXIOM;
D O I
10.1007/s10114-023-1681-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A diffeomorphism is non-uniformly partially hyperbolic if it preserves an ergodic measure with at least one zero Lyapunov exponent. We prove that a C-1-smooth Z(d)-action has the quasi-shadowing property if one of the generators is C1+alpha (alpha > 0) non-uniformly partially hyperbolic.
引用
收藏
页码:1563 / 1580
页数:18
相关论文
共 27 条
  • [21] Shadowing in actions of some Abelian groups
    Pilyugin, SY
    Tikhomirov, SB
    [J]. FUNDAMENTA MATHEMATICAE, 2003, 179 (01) : 83 - 96
  • [22] Pollicott Mark, 1993, LECT ERGODIC THEORY, V180, DOI [10.1017/CBO9780511752537, DOI 10.1017/CBO9780511752537]
  • [23] Schmidt K., 1995, DYNAMICAL SYSTEMS AL
  • [24] Sinai YG., 1972, USP MAT NAUK, V27, P21
  • [25] HYPERBOLIC PERIODIC POINTS FOR CHAIN HYPERBOLIC HOMOCLINIC CLASSES
    Sun, Wenxiang
    Yang, Yun
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2016, 36 (07) : 3911 - 3925
  • [26] CENTER SPECIFICATION PROPERTY AND ENTROPY FOR PARTIALLY HYPERBOLIC DIFFEOMORPHISMS
    Wang, Lin
    Zhu, Yujun
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2016, 36 (01) : 469 - 479
  • [27] Wang Luyu, 2021, ARXIV