Exponential multiple mixing for commuting automorphisms of a nilmanifold

被引:0
作者
Benard, Timothee [1 ]
Varju, Peter P. [1 ]
机构
[1] Ctr Math Sci, Wilberforce Rd, Cambridge CB3 0WB, England
基金
欧洲研究理事会;
关键词
exponential mixing; multiple mixing; nilmanifold automorphisms; Schmidt's subspace theorem; unit equations; ANOSOV ACTIONS; TORI;
D O I
10.1017/etds.2023.73
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let $l\in \mathbb {N}_{\ge 1}$ and $\alpha : \mathbb {Z}<^>l\rightarrow \text {Aut}(\mathscr {N})$ be an action of $\mathbb {Z}<^>l$ by automorphisms on a compact nilmanifold $\mathscr{N}$. We assume the action of every $\alpha (z)$ is ergodic for $z\in \mathbb {Z}<^>l\smallsetminus \{0\}$ and show that $\alpha $ satisfies exponential n-mixing for any integer $n\geq 2$. This extends the results of Gorodnik and Spatzier [Mixing properties of commuting nilmanifold automorphisms. Acta Math. 215 (2015), 127-159].
引用
收藏
页码:1729 / 1740
页数:12
相关论文
共 18 条
[1]  
Bombieri E., 2006, Heights in Diophantine geometry. Vol. 4. New Mathematical Monographs, V4
[2]   Limit theorems for partially hyperbolic systems [J].
Dolgopyat, D .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2004, 356 (04) :1637-1689
[3]  
Evertse J.-H., 2015, UNIT EQUATIONS DIOPH
[4]  
EVERTSE JH, 1984, COMPOS MATH, V53, P225
[5]   ANOSOV DIFFEOMORPHISMS CONSTRUCTED FROM PI-1 DIFF (SN) [J].
FARRELL, FT ;
JONES, LE .
TOPOLOGY, 1978, 17 (03) :273-282
[6]  
Fisher D, 2013, J AM MATH SOC, V26, P167
[7]   Totally nonsymplectic Anosov actions on tori and nilmanifolds [J].
Fisher, David ;
Kalinin, Boris ;
Spatzier, Ralf .
GEOMETRY & TOPOLOGY, 2011, 15 (01) :191-216
[8]   Mixing properties of commuting nilmanifold automorphisms [J].
Gorodnik, Alexander ;
Spatzier, Ralf .
ACTA MATHEMATICA, 2015, 215 (01) :127-159
[9]   Exponential mixing of nilmanifold automorphisms [J].
Gorodnik, Alexander ;
Spatzier, Ralf .
JOURNAL D ANALYSE MATHEMATIQUE, 2014, 123 :355-396
[10]   The quantitative behaviour of polynomial orbits on nilmanifolds [J].
Green, Ben ;
Tao, Terence .
ANNALS OF MATHEMATICS, 2012, 175 (02) :465-540