SEMANTIC SEGMENTATION OF ENHANCED LANDFORM MAPS USING HIGH RESOLUTION SATELLITE IMAGES

被引:0
|
作者
Kim, Minho [1 ]
Dronova, Iryna [1 ,2 ]
Radke, John [1 ,3 ]
机构
[1] Univ Calif Berkeley, Dept Landscape Architecture & Environm Planning, Berkeley, CA 94720 USA
[2] Univ Calif Berkeley, Dept Environm Sci Policy & Management, Berkeley, CA 94720 USA
[3] Univ Calif Berkeley, Dept City & Reg Planning, Berkeley, CA 94720 USA
来源
IGARSS 2023 - 2023 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM | 2023年
关键词
Enhanced lifeform map; semantic segmentation; deep learning; remote sensing;
D O I
10.1109/IGARSS52108.2023.10282737
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
High resolution fuel maps are useful for high resolution wildfire simulations and detection of hazards on the landscape. In general, high resolution Enhanced Lifeform Maps (ELMs) are used in conjunction with other data layers to create these fuel maps. However, ELMs are costly to make with substantial manual editing involved. In response, this study uses deep learning-based semantic segmentation models to generate 5-m resolution ELMs (14 classes) in Marin and San Mateo, California using high resolution remote sensing datasets. ELM classes were found to be severely imbalanced, leading to model overfitting. Sample weighted loss functions helped alleviate this issue to an extent. High resolution ELMs are bound to be more valuable with the growing fire risk and landscape heterogeneity, particularly near the wildland urban interface. All codes, future updates, and further details can be found at https://github.com/minhokim93/elm_mapping.
引用
收藏
页码:5491 / 5494
页数:4
相关论文
共 50 条
  • [1] Semantic segmentation of high-resolution satellite images using deep learning
    Kuldeep Chaurasia
    Rijul Nandy
    Omkar Pawar
    Ravi Ranjan Singh
    Meghana Ahire
    Earth Science Informatics, 2021, 14 : 2161 - 2170
  • [2] Semantic segmentation of high-resolution satellite images using deep learning
    Chaurasia, Kuldeep
    Nandy, Rijul
    Pawar, Omkar
    Singh, Ravi Ranjan
    Ahire, Meghana
    EARTH SCIENCE INFORMATICS, 2021, 14 (04) : 2161 - 2170
  • [3] Boundary Enhanced Semantic Segmentation for High Resolution Electron Microscope Images
    Pollach, Matthias
    Schiegg, Felix
    Ludwig, Matthias
    Bette, Ann-Christin
    Knoll, Alois
    2022 30TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO 2022), 2022, : 523 - 527
  • [4] Boundary Enhanced Semantic Segmentation for High Resolution Electron Microscope Images
    Pollach, Matthias
    Schiegg, Felix
    Ludwig, Matthias
    Bette, Ann-Christin
    Knoll, Alois
    European Signal Processing Conference, 2022, 2022-August : 523 - 527
  • [5] HrreNet: semantic segmentation network for moderate and high-resolution satellite images
    Li, Yanping
    Wang, Lu
    Zhang, Lei
    Chen, Haiwen
    Wang, Shiying
    Wang, Xiaoying
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2022, 43 (11) : 4065 - 4086
  • [6] Semantic segmentation of high-resolution images
    Juhong WANG
    Bin LIU
    Kun XU
    Science China(Information Sciences), 2017, 60 (12) : 256 - 261
  • [7] Semantic segmentation of high-resolution images
    Juhong Wang
    Bin Liu
    Kun Xu
    Science China Information Sciences, 2017, 60
  • [8] Semantic segmentation of high-resolution images
    Wang, Juhong
    Liu, Bin
    Xu, Kun
    SCIENCE CHINA-INFORMATION SCIENCES, 2017, 60 (12) : 123101:1 - 123101:6
  • [9] Progressively Growing Generative Adversarial Networks for High Resolution Semantic Segmentation of Satellite Images
    Collier, Edward
    Duffy, Kate
    Ganguly, Sangram
    Madanguit, Geri
    Kalia, Subodh
    Shreekant, Gayaka
    Nemani, Ramakrishna
    Michaelis, Andrew
    Li, Shuang
    Ganguly, Auroop
    Mukhopadhyay, Supratik
    2018 18TH IEEE INTERNATIONAL CONFERENCE ON DATA MINING WORKSHOPS (ICDMW), 2018, : 763 - 769
  • [10] Semantic segmentation of water bodies in very high-resolution satellite and aerial images
    Wieland, Marc
    Martinis, Sandro
    Kiefl, Ralph
    Gstaiger, Veronika
    REMOTE SENSING OF ENVIRONMENT, 2023, 287