We study a geometrical formulation of the nonlinear second-order Riccati equation (SORE) in terms of the projective vector field equation on S1, which in turn is related to the stability algebra of Virasoro orbit. Using Darboux integrability method, we obtain the first integral of the SORE and the results are applied to the study of its Lagrangian and Hamiltonian descriptions. Using these results, we show the existence of a Lagrangian description for SORE, and the Painleve II equation is analyzed.
机构:
Univ Illinois, Dept Phys, 845 W Taylor St, Chicago, IL 60607 USAUniv Illinois, Dept Phys, 845 W Taylor St, Chicago, IL 60607 USA
Aratyn, H.
Gomes, J. F.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Estadual Paulista, Inst Fis Teor, Rua Dr Bento Teobaldo Ferraz 271,Bloco 2, BR-01140070 Sao Paulo, BrazilUniv Illinois, Dept Phys, 845 W Taylor St, Chicago, IL 60607 USA
Gomes, J. F.
Ruy, D. V.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Estadual Paulista, Inst Fis Teor, Rua Dr Bento Teobaldo Ferraz 271,Bloco 2, BR-01140070 Sao Paulo, BrazilUniv Illinois, Dept Phys, 845 W Taylor St, Chicago, IL 60607 USA
Ruy, D. V.
Zimerman, A. H.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Estadual Paulista, Inst Fis Teor, Rua Dr Bento Teobaldo Ferraz 271,Bloco 2, BR-01140070 Sao Paulo, BrazilUniv Illinois, Dept Phys, 845 W Taylor St, Chicago, IL 60607 USA