共 50 条
Extraction and characterization of novel cellulosic biofiber from peduncle of Areca catechu L. biowaste for sustainable biocomposites
被引:15
作者:
Binoj, Joseph Selvi
[1
,2
]
Jaafar, Mariatti
[2
]
Mansingh, Bright Brailson
[3
]
Bharathiraja, Govindarajan
[1
]
机构:
[1] Saveetha Inst Med & Tech Sci SIMATS, Saveetha Sch Engn, Inst Engn Mech, Chennai 602105, Tamil Nadu, India
[2] Univ Sains Malaysia, Sch Mat & Mineral Resources Engn, Engn Campus, Nibong Tebal 14300, Penang, Malaysia
[3] Sri Ramakrishna Engn Coll, Dept Mech Engn, Coimbatore 641022, Tamil Nadu, India
关键词:
Discarded agro-waste;
Areca catechu L. fruit peduncle;
Cellulosic fiber;
Biocomposites;
Characterization;
PHYSICOCHEMICAL PROPERTIES;
MECHANICAL-PROPERTIES;
FIBER;
RAW;
D O I:
10.1007/s13399-023-04081-4
中图分类号:
TE [石油、天然气工业];
TK [能源与动力工程];
学科分类号:
0807 ;
0820 ;
摘要:
The use of readily available natural resources and wastes has become critical for achieving industrial sustainability. The current study focuses on the extraction and characterization of cellulosic Areca catechu fruit peduncle fibers (ACFPFs) from the peduncle of industrially discarded agro-waste after harvesting its economic value. To ensure ACFPF's potential and competitiveness in increasing the sustainability of the automobile industry, a number of comparisons were made between ACFPF and other commonly used natural fibers. To validate its claims, the major cellulose content (50.1 wt.%), less wax (0.3 wt.%), low density (1.05 g/cm(3)), high crystallinity index (49%), tensile strength (88-184 MPa), and Young's modulus (1.1-5.5 GPa) of ACFPF were estimated. Besides that, thermal analysis (TGA/DTG) ensures ACFPF thermal stability up to 228 degrees C. Furthermore, when exposed to higher temperatures, the differential scanning calorimetry (DSC) analysis of ACFPF revealed endothermic and exothermic reactions, whereas the Fourier transform infrared spectroscopy (FTIR) spectra revealed chemical bonds in ACFPF. Besides, technical qualities, performance, environmental, economic, and societal factors all contribute significantly to the sustainability and productivity of eco-friendly fiber composite industries. Also, the estimated values and rough surface observed with a scanning electron microscope (SEM) validate the use of sustainable cellulosic ACFPF as reinforcement in polymer composites for lightweight structural applications. Moreover, its implementation has a significant environmental impact in terms of developing an effective, sustainable waste management approach.
引用
收藏
页码:20359 / 20367
页数:9
相关论文
共 50 条