Modeling and Optimization of Herb-Fortified Fresh Kombucha Cheese: An Artificial Neural Network Approach for Enhancing Quality Characteristics

被引:1
作者
Loncar, Biljana [1 ]
Pezo, Lato [2 ]
Ilicic, Mirela [1 ]
Kanuric, Katarina [1 ]
Vukic, Dajana [1 ]
Degenek, Jovana [1 ]
Vukic, Vladimir [1 ]
机构
[1] Univ Novi Sad, Fac Technol Novi Sad, Bulevar Cara Lazara 1, Novi Sad 21000, Serbia
[2] Inst Gen & Phys Chem, Studentski trg 12-V, Belgrade 11000, Serbia
关键词
antimicrobial potential; antioxidant activity; Salvia officinalis; Thymus serpyllum L; ANN modeling; optimal formulation; kombucha; fresh cheese; extracts; REGRESSION-MODELS; MILK; PREDICTION; IMPACT; OIL;
D O I
10.3390/foods13040548
中图分类号
TS2 [食品工业];
学科分类号
0832 ;
摘要
In this study, an Artificial Neural Network (ANN) model is used to solve the complex task of producing fresh cheese with the desired quality parameters. The study focuses on kombucha fresh cheese samples fortified with ground wild thyme, supercritical fluid extract of wild thyme, ground sage and supercritical fluid extract of sage and optimizes the parameters of chemical composition, antioxidant potential and microbiological profile. The ANN models demonstrate robust generalization capabilities and accurately predict the observed results based on the input parameters. The optimal neural network model (MLP 6-10-16) with 10 neurons provides high r2 values (0.993 for training, 0.992 for testing, and 0.992 for validation cycles). The ANN model identified the optimal sample, a supercritical fluid extract of sage, on the 20th day of storage, showcasing specific favorable process parameters. These parameters encompass dry matter, fat, ash, proteins, water activity, pH, antioxidant potential (TP, DPPH, ABTS, FRAP), and microbiological profile. These findings offer valuable insights into producing fresh cheese efficiently with the desired quality attributes. Moreover, they highlight the effectiveness of the ANN model in optimizing diverse parameters for enhanced product development in the dairy industry.
引用
收藏
页数:21
相关论文
共 63 条
[1]   Artificial Neural Networks Based Optimization Techniques: A Review [J].
Abdolrasol, Maher G. M. ;
Hussain, S. M. Suhail ;
Ustun, Taha Selim ;
Sarker, Mahidur R. ;
Hannan, Mahammad A. ;
Mohamed, Ramizi ;
Ali, Jamal Abd ;
Mekhilef, Saad ;
Milad, Abdalrhman .
ELECTRONICS, 2021, 10 (21)
[2]   State-of-the-art in artificial neural network applications: A survey [J].
Abiodun, Oludare Isaac ;
Jantan, Aman ;
Omolara, Abiodun Esther ;
Dada, Kemi Victoria ;
Mohamed, Nachaat AbdElatif ;
Arshad, Humaira .
HELIYON, 2018, 4 (11)
[3]   Potential application of ginger, clove and thyme essential oils to improve soft cheese microbial safety and sensory characteristics [J].
Ahmed, Lamiaa Ibrahim ;
Ibrahim, Nehal ;
Abdel-Salam, Ayah Badawy ;
Fahim, Karima Mogahed .
FOOD BIOSCIENCE, 2021, 42
[4]  
Sánchez-González JA, 2017, REV FAC ING-UNIV ANT, P53
[5]  
Alimardanova M., 2021, Eastern-European Journal of Enterprise Technologies, V4, P73, DOI 10.15587/1729-4061.2021.239120
[6]  
Belewu M.A., 2013, Int. J. Nat, V4, P699
[7]   Factors associated with herd bulk milk composition and technological traits in the Italian dairy industry [J].
Benedet, A. ;
Manuelian, C. L. ;
Penasa, M. ;
Cassandro, M. ;
Righi, F. ;
Sternieri, M. ;
Galimberti, P. ;
Zambrini, A. V. ;
De Marchi, M. .
JOURNAL OF DAIRY SCIENCE, 2018, 101 (02) :934-943
[8]  
Bezie A., 2019, Nutrition Food Science International Journal, V9, P21
[9]   Prediction of the type of milk and degree of ripening in cheeses by means of artificial neural networks with data concerning fatty acids and near infrared spectroscopy [J].
Carlos Soto-Barajas, Milton ;
Inmaculada Gonzalez-Martin, Ma ;
Salvador-Esteban, Javier ;
Miguel Hernandez-Hierro, Jose ;
Moreno-Rodilla, Vidal ;
Ma Vivar-Quintana, Ana ;
Revilla, Isabel ;
Lobos Ortega, Iris ;
Moron-Sancho, Raul ;
Curto-Diego, Belen .
TALANTA, 2013, 116 :50-55
[10]   Classification of Pecorino cheeses using electronic nose combined with artificial neural network and comparison with GC-MS analysis of volatile compounds [J].
Cevoli, C. ;
Cerretani, L. ;
Gori, A. ;
Caboni, M. F. ;
Toschi, T. Gallina ;
Fabbri, A. .
FOOD CHEMISTRY, 2011, 129 (03) :1315-1319