POISSONIAN HYPERSPECTRAL IMAGE DENOISING WITHOUT USING ANSCOMBE TRANSFORM

被引:0
|
作者
Wang, Yulan [1 ,2 ,3 ]
Wang, Peng [4 ,5 ]
Zhang, Xiwang [6 ]
Wang, Jue [1 ,6 ,7 ]
Muller, Matthieu [8 ]
机构
[1] Nanjing Univ Aeronaut & Astronaut, Coll Elect & Informat Engn, Nanjing 210016, Peoples R China
[2] Beijing Inst Surveying & Mapping, Beijing Key Lab Urban Spatial Informat Engn, Beijing 100038, Peoples R China
[3] Minist Nat Resources, Jiangsu Prov Surveying & Mapping Engn Inst, Key Lab Land Satellite Remote Sensing Applicat, Nanjing 211112, Peoples R China
[4] Changan Univ, Xian Key Lab Territorial Spatial Informat, Xian 710064, Peoples R China
[5] Nanjing Univ Aeronaut & Astronaut, Key Lab Radar Imaging & Microwave Photon, Minist Educ, Nanjing 210016, Peoples R China
[6] Henan Univ, Key Lab Geospatial Technol Middle & Lower Yellow, Minist Educ, Kaifeng 475001, Peoples R China
[7] Univ Calif San Diego, Rady Sch Management, San Diego, CA 92093 USA
[8] Univ Grenoble Alpes, CNRS, Grenoble INP, GIPSA Lab, F-38000 Grenoble, France
基金
中国国家自然科学基金;
关键词
Hyperspectral imagery; hyperspectral denoising; Poisson noise; maximum a posteriori estimation;
D O I
10.1109/IGARSS52108.2023.10282110
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
In the most existing Hyperspectral Image (HSI) denoising methods, Poisson noise is first transformed into Gaussian noise through Anscombe transform and then remove it. However, transform errors may occur that affect the final denoising results when using Anscombe transform. In this paper, we propose a Poissonian hyperspectral image denoising method without using Anscombe transform (WUAT) to directly remove the noise of Poissonian HSI under the maximum a posteriori (MAP) model by finding the minimum value of the negative logarithmic Poisson log-likelihood combined with the total variation (TV). The experimental results show that the proposed method can acquire better performance than most state-of-the-art denoising methods.
引用
收藏
页码:7300 / 7303
页数:4
相关论文
共 50 条
  • [31] Poissonian Blurred Hyperspectral Imagery Denoising Based on Variable Splitting and Penalty Technique
    Wang, Peng
    Wang, Yulan
    Huang, Bo
    Wang, Liguo
    Zhang, Xiwang
    Leung, Henry
    Chanussot, Jocelyn
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61
  • [32] Medical Images Denoising Method Based on Total Variation Regularization and Anscombe Transform
    Le Thi Thanh
    Thanh, Dang N. H.
    ISCIT 2019: PROCEEDINGS OF 2019 19TH INTERNATIONAL SYMPOSIUM ON COMMUNICATIONS AND INFORMATION TECHNOLOGIES (ISCIT), 2019, : 26 - 30
  • [33] HYPERSPECTRAL IMAGE DENOISING USING 3D WAVELETS
    Rasti, Behnood
    Sveinsson, Johannes R.
    Ulfarsson, Magnus O.
    Benediktsson, Jon Atli
    2012 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2012, : 1349 - 1352
  • [34] Image Denoising with Grouplet Transform
    Yan, Jingwen
    Wang, Zhixi
    Dai, Longquan
    Huang, Daxiang
    2ND IEEE INTERNATIONAL CONFERENCE ON ADVANCED COMPUTER CONTROL (ICACC 2010), VOL. 3, 2010, : 65 - 69
  • [35] The curvelet transform for image denoising
    Starck, JL
    Candès, EJ
    Donoho, DL
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2002, 11 (06) : 670 - 684
  • [36] ON THE INVERSION OF THE ANSCOMBE TRANSFORMATION IN LOW-COUNT POISSON IMAGE DENOISING
    Makitalo, Markku
    Foi, Alessandro
    LNLA: 2009 INTERNATIONAL WORKSHOP ON LOCAL AND NON-LOCAL APPROXIMATION IN IMAGE PROCESSING, 2009, : 26 - 32
  • [37] Hyperspectral Image Denoising with Spectrum Alignment
    Xiao, Jiahua
    Ji, Yantao
    Wei, Xing
    PROCEEDINGS OF THE 31ST ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2023, 2023, : 5495 - 5503
  • [38] Hyperspectral Image Denoising Using Spectral-Spatial Transform-Based Sparse and Low-Rank Representations
    Zhao, Bin
    Ulfarsson, Magnus O.
    Sveinsson, Johannes R.
    Chanussot, Jocelyn
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [39] Hyperspectral Image Denoising with Realistic Data
    Zhang, Tao
    Fu, Ying
    Li, Cheng
    2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, : 2228 - 2237
  • [40] Enhanced Hyperspectral Image Segmentation Using Wavelets Transform
    Hemayed, Elsayed E.
    Megahed, Reem Adel A.
    2013 9TH INTERNATIONAL COMPUTER ENGINEERING CONFERENCE (ICENCO 2013): TODAY INFORMATION SOCIETY WHAT'S NEXT?, 2014, : 61 - 66