The Metric Dimension of the Zero-Divisor Graph of a Matrix Semiring

被引:2
作者
Dolzan, David [1 ,2 ]
机构
[1] Univ Ljubljana, Fac Math & Phys, Dept Math, Jadranska 19, Ljubljana 1000, Slovenia
[2] Inst Math Phys & Mech, Jadranska 19, Ljubljana 1000, Slovenia
关键词
Matrix; Semiring; Zero-divisor; Graph; Metric dimension;
D O I
10.1007/s40840-023-01591-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We find the metric dimension of the zero-divisor graph of the matrix semiring over a commutative entire antinegative semiring.
引用
收藏
页数:10
相关论文
共 35 条
[1]   On the Commuting Graph of Dihedral Group [J].
Ali, Faisal ;
Salman, Muhammad ;
Huang, Shuliang .
COMMUNICATIONS IN ALGEBRA, 2016, 44 (06) :2389-2401
[2]   The zero-divisor graph of a commutative ring [J].
Anderson, DF ;
Livingston, PS .
JOURNAL OF ALGEBRA, 1999, 217 (02) :434-447
[3]  
[Anonymous], 2002, Int. J. Commut. Rings
[4]  
Atani SE, 2008, GLAS MAT, V43, P309
[5]  
Baccelli J., 1998, IDEMPOTENCY, P171
[6]   COLORING OF COMMUTATIVE RINGS [J].
BECK, I .
JOURNAL OF ALGEBRA, 1988, 116 (01) :208-226
[7]   ON STRONG METRIC DIMENSION OF ZERO-DIVISOR GRAPHS OF RINGS [J].
Bhat, M. Imran ;
Pirzada, Shariefuddin .
KOREAN JOURNAL OF MATHEMATICS, 2019, 27 (03) :563-580
[8]  
Cameron PJ., 1991, Designs, Graphs, Codes and Their Links, LMS Student Texts, V22, DOI [10.1017/CBO9780511623714, DOI 10.1017/CBO9780511623714]
[9]   Zero-divisor graphs of nearrings and semigroups [J].
Cannon, GA ;
Neuerburg, KM ;
Redmond, SP .
NEARRING AND NEARFIELDS, 2005, :189-200
[10]   Resolvability in graphs and the metric dimension of a graph [J].
Chartrand, G ;
Eroh, L ;
Johnson, MA ;
Oellermann, OR .
DISCRETE APPLIED MATHEMATICS, 2000, 105 (1-3) :99-113