Manufacturing of graphene based synaptic devices for optoelectronic applications

被引:73
作者
Zhou, Kui [1 ]
Jia, Ziqi [1 ]
Ma, Xin-Qi [1 ]
Niu, Wenbiao [1 ]
Zhou, Yao [2 ]
Huang, Ning [1 ]
Ding, Guanglong [1 ]
Yan, Yan [3 ]
Han, Su-Ting [3 ]
Roy, Vellaisamy A. L. [4 ,5 ]
Zhou, Ye [1 ]
机构
[1] Shenzhen Univ, Inst Adv Study, Shenzhen 518060, Peoples R China
[2] Shenzhen Univ, Coll Mat Sci & Engn, Shenzhen 518060, Peoples R China
[3] Shenzhen Univ, Coll Elect & Informat Engn, Shenzhen 518060, Peoples R China
[4] Hong Kong Metropolitan Univ, Sch Sci & Technol, Hong Kong, Peoples R China
[5] Univ Glasgow, James Watt Sch Engn, Glasgow G12 8QQ, Scotland
基金
中国国家自然科学基金;
关键词
graphene; synaptic device; memristor; optoelectronic applications; WAFER-SCALE GRAPHENE; FEW-LAYER GRAPHENE; HIGH-QUALITY; EPITAXIAL GRAPHENE; DIRECT GROWTH; CVD GRAPHENE; LARGE-AREA; FILMS; TRANSPARENT; EXFOLIATION;
D O I
10.1088/2631-7990/acee2e
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Neuromorphic computing systems can perform memory and computing tasks in parallel on artificial synaptic devices through simulating synaptic functions, which is promising for breaking the conventional von Neumann bottlenecks at hardware level. Artificial optoelectronic synapses enable the synergistic coupling between optical and electrical signals in synaptic modulation, which opens up an innovative path for effective neuromorphic systems. With the advantages of high mobility, optical transparency, ultrawideband tunability, and environmental stability, graphene has attracted tremendous interest for electronic and optoelectronic applications. Recent progress highlights the significance of implementing graphene into artificial synaptic devices. Herein, to better understand the potential of graphene-based synaptic devices, the fabrication technologies of graphene are first presented. Then, the roles of graphene in various synaptic devices are demonstrated. Furthermore, their typical optoelectronic applications in neuromorphic systems are reviewed. Finally, outlooks for development of synaptic devices based on graphene are proposed. This review will provide a comprehensive understanding of graphene fabrication technologies and graphene-based synaptic device for optoelectronic applications, also present an outlook for development of graphene-based synaptic device in future neuromorphic systems.
引用
收藏
页数:28
相关论文
共 162 条
[31]   Electronic structure and transport measurements of amorphous transition-metal oxides: observation of Fermi glass behavior [J].
Goldfarb, I. ;
Miao, F. ;
Yang, J. Joshua ;
Yi, W. ;
Strachan, J. P. ;
Zhang, M-X. ;
Pickett, M. D. ;
Medeiros-Ribeiro, G. ;
Williams, R. Stanley .
APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2012, 107 (01) :1-11
[32]   A universal transfer route for graphene [J].
Gorantla, Sandeep ;
Bachmatiuk, Alicja ;
Hwang, Jeonghyun ;
Alsalman, Hussain A. ;
Kwak, Joon Young ;
Seyller, Thomas ;
Eckert, Juergen ;
Spencer, Michael G. ;
Ruemmeli, Mark H. .
NANOSCALE, 2014, 6 (02) :889-896
[33]   Nanographenes and Graphene Nanoribbons as Multitalents of Present and Future Materials Science [J].
Gu, Yanwei ;
Qiu, Zijie ;
Muellen, Klaus .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2022, 144 (26) :11499-11524
[34]   Light-Stimulated Synaptic Transistor with High PPF Feature for Artificial Visual Perception System Application [J].
Han, Chao ;
Han, Xingwei ;
Han, Jiayue ;
He, Meiyu ;
Peng, Silu ;
Zhang, Chaoyi ;
Liu, Xianchao ;
Gou, Jun ;
Wang, Jun .
ADVANCED FUNCTIONAL MATERIALS, 2022, 32 (22)
[35]   Recent Progress in Optoelectronic Synapses for Artificial Visual-Perception System [J].
Han, Xun ;
Xu, Zhangsheng ;
Wu, Wenqiang ;
Liu, Xianhu ;
Yan, Peiguang ;
Pan, Caofeng .
SMALL STRUCTURES, 2020, 1 (03)
[36]   The Role of Surface Oxygen in the Growth of Large Single-Crystal Graphene on Copper [J].
Hao, Yufeng ;
Bharathi, M. S. ;
Wang, Lei ;
Liu, Yuanyue ;
Chen, Hua ;
Nie, Shu ;
Wang, Xiaohan ;
Chou, Harry ;
Tan, Cheng ;
Fallahazad, Babak ;
Ramanarayan, H. ;
Magnuson, Carl W. ;
Tutuc, Emanuel ;
Yakobson, Boris I. ;
McCarty, Kevin F. ;
Zhang, Yong-Wei ;
Kim, Philip ;
Hone, James ;
Colombo, Luigi ;
Ruoff, Rodney S. .
SCIENCE, 2013, 342 (6159) :720-723
[37]   Photonic Potentiation and Electric Habituation in Ultrathin Memristive Synapses Based on Monolayer MoS2 [J].
He, Hui-Kai ;
Yang, Rui ;
Zhou, Wen ;
Huang, He-Ming ;
Xiong, Jue ;
Gan, Lin ;
Zhai, Tian-You ;
Guo, Xin .
SMALL, 2018, 14 (15)
[38]   High-yield production of graphene by liquid-phase exfoliation of graphite [J].
Hernandez, Yenny ;
Nicolosi, Valeria ;
Lotya, Mustafa ;
Blighe, Fiona M. ;
Sun, Zhenyu ;
De, Sukanta ;
McGovern, I. T. ;
Holland, Brendan ;
Byrne, Michele ;
Gun'ko, Yurii K. ;
Boland, John J. ;
Niraj, Peter ;
Duesberg, Georg ;
Krishnamurthy, Satheesh ;
Goodhue, Robbie ;
Hutchison, John ;
Scardaci, Vittorio ;
Ferrari, Andrea C. ;
Coleman, Jonathan N. .
NATURE NANOTECHNOLOGY, 2008, 3 (09) :563-568
[39]   Large-Scale and Flexible Optical Synapses for Neuromorphic Computing and Integrated Visible Information Sensing Memory Processing [J].
Hou, Ya-Xin ;
Li, Yi ;
Zhang, Zhi-Cheng ;
Li, Jia-Qiang ;
Qi, De-Han ;
Chen, Xu-Dong ;
Wang, Jing-Jing ;
Yao, Bin-Wei ;
Yu, Mei-Xi ;
Lu, Tong-Bu ;
Zhang, Jin .
ACS NANO, 2021, 15 (01) :1497-1508
[40]   Layer-by-Layer Graphene/TCNQ Stacked Films as Conducting Anodes for Organic Solar Cells [J].
Hsu, Chang-Lung ;
Lin, Cheng-Te ;
Huang, Jen-Hsien ;
Chu, Chih-Wei ;
Wei, Kung-Hwa ;
Li, Lain-Jong .
ACS NANO, 2012, 6 (06) :5031-5039