Zig-zag-matrix algebras and solvable quasi-Hermitian quantum models

被引:0
作者
Znojil, Miloslav [1 ,2 ,3 ]
机构
[1] Czech Acad Sci, Nucl Phys Inst, Hlavni 130, Rez 25068, Czech Republic
[2] Univ Hradec Kralove, Fac Sci, Dept Phys, Rokitanskeho 62, Hradec Kralove 50003, Czech Republic
[3] Durban Univ Technol, Inst Syst Sci, Durban, South Africa
关键词
non-Hermitian quantum mechanics of unitary systems; a zig-zag-matrix class of N-state solvable models; closed formulae for wave functions; closed formula for general physical inner-product metric; HAMILTONIANS;
D O I
10.1088/1751-8121/ace8d5
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In quantum mechanics of unitary systems using non-Hermitian (or, more precisely, Theta-quasi-Hermitian) Hamiltonians H such that H(SIC) Theta = Theta H, the exactly solvable M-level bound-state models with arbitrary M <=infinity are rare. A new class of such models is proposed here, therefore. Its exact algebraic solvability (involving not only the closed formulae for wave functions but also the explicit description of all of the eligible metrics Theta) was achieved due to an extremely sparse (viz., just (2M-1)- parametric) but still nontrivial 'zig-zag-matrix' choice of the form of H.
引用
收藏
页数:10
相关论文
共 23 条
[1]  
Bagarello Fabio., 2015, Non-Selfadjoint Operators in Quantum Physics
[2]   Making sense of non-Hermitian Hamiltonians [J].
Bender, Carl M. .
REPORTS ON PROGRESS IN PHYSICS, 2007, 70 (06) :947-1018
[3]   Real spectra in non-Hermitian Hamiltonians having PT symmetry [J].
Bender, CM ;
Boettcher, S .
PHYSICAL REVIEW LETTERS, 1998, 80 (24) :5243-5246
[4]  
Cooper F., 1995, Physics Reports, V251, P267, DOI 10.1016/0370-1573(94)00080-M
[5]  
Deguchi T., 2003, CLASSICAL QUANTUM NO, P113
[6]  
Dieudonne J., 1961, P INT S LINEAR SPACE, P115
[7]   GENERAL THEORY OF SPIN-WAVE INTERACTIONS [J].
DYSON, FJ .
PHYSICAL REVIEW, 1956, 102 (05) :1217-1230
[9]  
Guenther U., 2019, arXiv
[10]   BOSON DESCRIPTION OF COLLECTIVE STATES .1. DERIVATION OF BOSON TRANSFORMATION FOR EVEN FERMION SYSTEMS [J].
JANSSEN, D ;
DONAU, F ;
FRAUENDORF, S ;
JOLOS, RV .
NUCLEAR PHYSICS A, 1971, A172 (01) :145-+