The Qitai radio telescope

被引:58
作者
Wang, Na [1 ,2 ,3 ]
Xu, Qian [1 ,2 ,3 ]
Ma, Jun [1 ,2 ,4 ]
Liu, Zhiyong [1 ,2 ,3 ]
Liu, Qi [1 ,2 ,4 ]
Zhang, Hailong [1 ,2 ]
Pei, Xin [1 ,2 ,4 ]
Chen, Maozheng [1 ,2 ,4 ]
Manchester, Richard N. [5 ]
Lee, Kejia [6 ]
Zheng, Xingwu [7 ]
Kaercher, Hans J. [8 ,10 ]
Zhao, Wulin [9 ]
Li, Hongwei [9 ]
Li, Dongwei [9 ]
Suess, Martin [10 ]
Reichert, Matthias [10 ]
Zhu, Zhongyi [11 ]
Wang, Congsi [12 ]
Li, Mingshuai [1 ,2 ]
Li, Rui [1 ,2 ]
Li, Ning [1 ,2 ]
Kazezkhan, Guljaina [1 ,2 ]
Yan, Wenming [1 ,2 ,3 ]
Wu, Gang [1 ]
Cui, Lang [1 ,2 ,3 ]
Zhang, Ming [1 ,2 ,3 ]
Li, Haitao [1 ]
机构
[1] Chinese Acad Sci, Xinjiang Astron Observ, Urumqi 830011, Peoples R China
[2] Chinese Acad Sci, Key Lab Radio Astron, Nanjing 210008, Peoples R China
[3] Xinjiang Key Lab Radio Astrophys, Urumqi 830011, Peoples R China
[4] Xinjiang Key Lab Microwave Technol, Urumqi 830011, Peoples R China
[5] CSIRO Space & Astron, Australia Telescope Natl Facil, Epping 1710, Australia
[6] Peking Univ, Dept Astron, Beijing 100871, Peoples R China
[7] Nanjing Univ, Sch Astron & Space Sci, Nanjing 210093, Peoples R China
[8] Dr Hans Jurgen Karcher Engn Off, D-61184 Karben, Germany
[9] Northwest China Res Inst Elect Equipment, Xian 710065, Peoples R China
[10] OHB Digital Connect MT Mechatron, D-55130 Mainz, Germany
[11] Beijing Inst Architectural Design, Beijing 100045, Peoples R China
[12] Xidian Univ, Guangzhou Inst Technol, Guangzhou 510555, Peoples R China
来源
SCIENCE CHINA-PHYSICS MECHANICS & ASTRONOMY | 2023年 / 66卷 / 08期
基金
中国国家自然科学基金;
关键词
radio telescope; radio astronomy; observation; receiver; RFI; PULSAR; DESIGN; HALO;
D O I
10.1007/s11433-023-2131-1
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
This study presents a general outline of the Qitai radio telescope (QTT) project. Qitai, the site of the telescope, is a county of Xinjiang Uygur Autonomous Region of China, located in the east Tianshan Mountains at an elevation of about 1800 m. The QTT is a fully steerable, Gregorian-type telescope with a standard parabolic main reflector of 110 m diameter. The QTT has adopted an umbrella support, homology-symmetric lightweight design. The main reflector is active so that the deformation caused by gravity can be corrected. The structural design aims to ultimately allow high-sensitivity observations from 150 MHz up to 115 GHz. To satisfy the requirements for early scientific goals, the QTT will be equipped with ultra-wideband receivers and large field-of-view multi-beam receivers. A multi-function signal-processing system based on RFSoC and GPU processor chips will be developed. These will enable the QTT to operate in pulsar, spectral line, continuum and Very Long Baseline Interferometer (VLBI) observing modes. Electromagnetic compatibility (EMC) and radio frequency interference (RFI) control techniques are adopted throughout the system design. The QTT will form a world-class observational platform for the detection of low-frequency (nanoHertz) gravitational waves through pulsar timing array (PTA) techniques, pulsar surveys, the discovery of binary black-hole systems, and exploring dark matter and the origin of life in the universe. The QTT will also play an important role in improving the Chinese and international VLBI networks, allowing high-sensitivity and high-resolution observations of the nuclei of distant galaxies and gravitational lensing systems. Deep astrometric observations will also contribute to improving the accuracy of the celestial reference frame. Potentially, the QTT will be able to support future space activities such as planetary exploration in the solar system and to contribute to the search for extraterrestrial intelligence.
引用
收藏
页数:12
相关论文
共 46 条
[1]  
Morgan MA, 2009, Arxiv, DOI arXiv:0908.3849
[2]   Identifying WIMP dark matter from particle and astroparticle data [J].
Bertone, Gianfranco ;
Bozorgnia, Nassim ;
Kim, Jong Soo ;
Liem, Sebastian ;
McCabe, Christopher ;
Otten, Sydney ;
Ruiz de Austri, Roberto .
JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2018, (03)
[3]   Relativistic Jets from Active Galactic Nuclei [J].
Blandford, Roger ;
Meier, David ;
Readhead, Anthony .
ANNUAL REVIEW OF ASTRONOMY AND ASTROPHYSICS, VOL 57, 2019, 2019, 57 :467-509
[4]   Deep SAURON spectral imaging of the diffuse Lyman α halo LAB1 in SSA 22 [J].
Bower, RG ;
Morris, SL ;
Bacon, R ;
Wilman, RJ ;
Sullivan, M ;
Chapman, S ;
Davies, RL ;
de Zeeuw, PT ;
Emsellem, E .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2004, 351 (01) :63-69
[5]   The third realization of the International Celestial Reference Frame by very long baseline interferometry [J].
Charlot, P. ;
Jacobs, C. S. ;
Gordon, D. ;
Lambert, S. ;
de Witt, A. ;
Boehm, J. ;
Fey, A. L. ;
Heinkelmann, R. ;
Skurikhina, E. ;
Titov, O. ;
Arias, E. F. ;
Bolotin, S. ;
Bourda, G. ;
Ma, C. ;
Malkin, Z. ;
Nothnagel, A. ;
Mayer, D. ;
MacMillan, D. S. ;
Nilsson, T. ;
Gaume, R. .
ASTRONOMY & ASTROPHYSICS, 2020, 644
[6]  
Cheng J, 2009, ASTROPHYS SPACE SC L, V360, P1, DOI 10.1007/b105475
[7]   FAST early pulsar discoveries: Effelsberg follow-up [J].
Cruces, M. ;
Champion, D. J. ;
Li, D. ;
Kramer, M. ;
Zhu, W. W. ;
Wang, P. ;
Cameron, A. D. ;
Chen, Y. T. ;
Hobbs, G. ;
Freire, P. C. C. ;
Graikou, E. ;
Krco, M. ;
Liu, Z. J. ;
Miao, C. C. ;
Niu, J. ;
Pan, Z. C. ;
Qian, L. ;
Xue, M. Y. ;
Xie, X. Y. ;
You, S. P. ;
Yu, X. H. ;
Yuan, M. ;
Yue, Y. L. ;
Zhu, Y. .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2021, 508 (01) :300-314
[8]   Fast radio bursts: do repeaters and non-repeaters originate in statistically similar ensembles? [J].
Cui, Xiang-Han ;
Zhang, Cheng-Min ;
Wang, Shuang-Qiang ;
Zhang, Jian-Wei ;
Li, Di ;
Peng, Bo ;
Zhu, Wei-Wei ;
Wang, Na ;
Strom, Richard ;
Ye, Chang-Qing ;
Wang, De-Hua ;
Yang, Yi-Yan .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2021, 500 (03) :3275-3280
[9]  
Dunning A, 2015, 2015 IEEE-APS TOPICAL CONFERENCE ON ANTENNAS AND PROPAGATION IN WIRELESS COMMUNICATIONS (APWC), P787, DOI 10.1109/APWC.2015.7300180
[10]   Physical conditions in regions of star formation [J].
Evans, NJ .
ANNUAL REVIEW OF ASTRONOMY AND ASTROPHYSICS, 1999, 37 :311-362