Knowledge graphs for enhancing transparency in health data ecosystems

被引:9
作者
Aisopos, Fotis [1 ]
Jozashoori, Samaneh [2 ,3 ,4 ]
Niazmand, Emetis [2 ,3 ,4 ]
Purohit, Disha [2 ,3 ,4 ]
Rivas, Ariam [2 ,3 ,4 ]
Sakor, Ahmad [2 ,3 ,4 ]
Iglesias, Enrique [2 ,3 ,4 ]
Vogiatzis, Dimitrios [1 ,5 ]
Menasalvas, Ernestina [6 ]
Rodriguez Gonzalez, Alejandro [6 ]
Vigueras, Guillermo [6 ]
Gomez-Bravo, Daniel [6 ]
Torrente, Maria [7 ]
Hernandez Lopez, Roberto [7 ]
Provencio Pulla, Mariano [7 ]
Dalianis, Athanasios [8 ]
Triantafillou, Anna [8 ]
Paliouras, Georgios [1 ]
Vidal, Maria-Esther [2 ,3 ,4 ]
机构
[1] Natl Ctr Sci Res Demokritos, Inst Informat & Telecommun, Aghia Paraskevi, Greece
[2] Leibniz Univ Hannover, Hannover, Germany
[3] L3S Res Ctr, Hannover, Germany
[4] TIB Leibniz Informat Ctr Sci & Technol, Hannover, Germany
[5] Amer Coll Greece, Deree, Greece
[6] Univ Politecn Madrid, Madrid, Spain
[7] Puerta de Hierro Univ Hosp, Dept Med Oncol, Serv Madrileno Salud, Madrid, Spain
[8] Athens Technol Ctr, Innovat Lab, Athens, Greece
基金
欧盟地平线“2020”;
关键词
Healthcare systems; data ecosystems; knowledge graphs; ETHICS; CARE;
D O I
10.3233/SW-223294
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Tailoring personalized treatments demands the analysis of a patient's characteristics, which may be scattered over a wide variety of sources. These features include family history, life habits, comorbidities, and potential treatment side effects. Moreover, the analysis of the services visited the most by a patient before a new diagnosis, as well as the type of requested tests, may uncover patterns that contribute to earlier disease detection and treatment effectiveness. Built on knowledge-driven ecosystems, we devise DE4LungCancer, a health data ecosystem of data sources for lung cancer. In this data ecosystem, knowledge extracted from heterogeneous sources, e.g., clinical records, scientific publications, and pharmacological data, is integrated into knowledge graphs. Ontologies describe the meaning of the combined data, and mapping rules enable the declarative definition of the transformation and integration processes. DE4LungCancer is assessed regarding the methods followed for data quality assessment and curation. Lastly, the role of controlled vocabularies and ontologies in health data management is discussed, as well as their impact on transparent knowledge extraction and analytics. This paper presents the lessons learned in the DE4LungCancer development. It demonstrates the transparency level supported by the proposed knowledge-driven ecosystem, in the context of the lung cancer pilots of the EU H2020-funded project BigMedilytic, the ERA PerMed funded project P4-LUCAT, and the EU H2020 projects CLARIFY and iASiS.
引用
收藏
页码:943 / 976
页数:34
相关论文
共 60 条
[1]   The dark side of data ecosystems: A longitudinal study of the DAMD project [J].
Aaen, Jon ;
Nielsen, Jeppe Agger ;
Carugati, Andrea .
EUROPEAN JOURNAL OF INFORMATION SYSTEMS, 2022, 31 (03) :288-312
[2]   The Comparative Efficacy and Safety of the Angiotensin Receptor Blockers in the Management of Hypertension and Other Cardiovascular Diseases [J].
Abraham, Hazel Mae A. ;
White, C. Michael ;
White, William B. .
DRUG SAFETY, 2015, 38 (01) :33-54
[3]   Enhancing answer completeness of SPARQL queries via crowdsourcing [J].
Acosta, Maribel ;
Simperl, Elena ;
Floeck, Fabian ;
Vidal, Maria-Esther .
JOURNAL OF WEB SEMANTICS, 2017, 45 :41-62
[4]  
[Anonymous], 2018, Ethics guidelines for trustworthy artificial intelligence
[5]  
Aronson AR., 2006, DHHS, V1, P26
[6]   DBpedia: A nucleus for a web of open data [J].
Auer, Soeren ;
Bizer, Christian ;
Kobilarov, Georgi ;
Lehmann, Jens ;
Cyganiak, Richard ;
Ives, Zachary .
SEMANTIC WEB, PROCEEDINGS, 2007, 4825 :722-+
[7]   Big Data Clinical Research: Validity, Ethics, and Regulation [J].
Balas, E. Andrew ;
Vernon, Marlo ;
Magrabi, Farah ;
Gordon, Lynne Thomas ;
Sexton, Joanne .
MEDINFO 2015: EHEALTH-ENABLED HEALTH, 2015, 216 :448-452
[8]  
Bordes Antoine, 2013, Advances in neural information processing systems, V26
[9]  
Bougiatiotis K, 2020, Arxiv, DOI [arXiv:2002.08762, DOI 10.48550/ARXIV.2002.08762]
[10]   Drug-Drug Interaction Prediction on a Biomedical Literature Knowledge Graph [J].
Bougiatiotis, Konstantinos ;
Aisopos, Fotis ;
Nentidis, Anastasios ;
Krithara, Anastasia ;
Paliouras, Georgios .
ARTIFICIAL INTELLIGENCE IN MEDICINE (AIME 2020), 2020, :122-132