Optimal Planning of Electric Vehicle Charging Stations Considering Traffic Load for Smart Cities

被引:5
|
作者
Campana, Miguel [1 ,3 ]
Inga, Esteban [1 ,2 ]
机构
[1] Univ Politecn Salesiana, Dept Master Elect, Quito 170525, Ecuador
[2] Univ Politecn Salesiana, Smart Grid Res Grp, Quito 170525, Ecuador
[3] Postgrad Dept, Giron Campus,Ave 12 Octubre N 23-52, Quito 170525, Ecuador
来源
WORLD ELECTRIC VEHICLE JOURNAL | 2023年 / 14卷 / 04期
关键词
EV charging stations; georeferenced systems; vehicle flow paths; optimization; transport problem; MODEL; ASSIGNMENT;
D O I
10.3390/wevj14040104
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The massive introduction of electric vehicles as a mobility alternative requires deploying an infrastructure of charging stations for electric cars (ICSEC). This new mobility concept will mitigate the environmental harm caused by the emission of CO2 generated by conventional internal combustion mobility methods. The sustainability of the ICSEC depends not only on the capacity to meet the demand for charging batteries for electric vehicles (EV) but also on an adequate number of public/private charging stations (CS) distributed in a geolocalized area. It is noted that the distribution of CS must respond to a set of real mobility constraints, such as vehicular flow capacity, road capacity, and trajectories. The planning, intelligent location of public charging stations (PCS), and contingency analysis will enable us to study the increase in demand for electrical distribution substations (EDS). Therefore, the present model explains the need to plan the massive introduction of EVs by observing the user's conditions at the trajectory level through finite resource allocation processes, segmentation, and minimum spanning trees, by observing heterogeneous vehicular flow criteria through microscopic analysis, to understand the space-time relationship of vehicular flow in georeferenced scenarios. Consequently, the computational complexity of the model is of the combinatorial type, and it is defined as NP-Hard given the multiple variables and constraints within the transportation problem.
引用
收藏
页数:28
相关论文
共 50 条
  • [1] Optimal Planning of Electric Vehicle Charging Stations Considering User Satisfaction and Charging Convenience
    Xu, Di
    Pei, Wenhui
    Zhang, Qi
    ENERGIES, 2022, 15 (14)
  • [2] Optimal expansion planning of electric vehicle fast charging stations
    Woo, Hyeon
    Son, Yongju
    Cho, Jintae
    Kim, Sung-Yul
    Choi, Sungyun
    APPLIED ENERGY, 2023, 342
  • [3] Optimal deployment of fast-charging stations for electric vehicles considering the sizing of the electrical distribution network and traffic condition
    Campana, Miguel
    Inga, Esteban
    ENERGY REPORTS, 2023, 9 : 5246 - 5268
  • [4] Optimal Allocation of Electric Vehicle Charging Stations With Adopted Smart Charging/Discharging Schedule
    Hadian, Emad
    Akbari, Hamidreza
    Farzinfar, Mehdi
    Saeed, Seyedamin
    IEEE ACCESS, 2020, 8 (08): : 196908 - 196919
  • [5] Research on multi-objective planning of electric vehicle charging stations considering the condition of urban traffic network
    Wang, Limeng
    Yang, Chao
    Zhang, Yi
    Bu, Fanjin
    ENERGY REPORTS, 2022, 8 : 11825 - 11839
  • [6] Joint planning of distributed generation and electric vehicle charging stations considering real-time charging navigation
    Luo, Lizi
    Gu, Wei
    Wu, Zhi
    Zhou, Suyang
    APPLIED ENERGY, 2019, 242 : 1274 - 1284
  • [7] Coordinated Planning Strategy for Electric Vehicle Charging Stations and Coupled Traffic-Electric Networks
    Wang, Xu
    Shahidehpour, Mohammad
    Jiang, Chuanwen
    Li, Zhiyi
    IEEE TRANSACTIONS ON POWER SYSTEMS, 2019, 34 (01) : 268 - 279
  • [8] Optimal planning of electric vehicle charging stations comprising multi-types of charging facilities
    Luo, Lizi
    Gu, Wei
    Zhou, Suyang
    Huang, He
    Gao, Song
    Han, Jun
    Wu, Zhi
    Dou, Xiaobo
    APPLIED ENERGY, 2018, 226 : 1087 - 1099
  • [9] Optimal Planning of Electric Vehicle Fast-Charging Stations Considering Uncertain Charging Demands via Dantzig-Wolfe Decomposition
    Wang, Luyun
    Zhou, Bo
    SUSTAINABILITY, 2023, 15 (08)
  • [10] Robust Planning of Electric Vehicle Charging Stations Considering Demand Uncertainty and Facility Failures
    Chen, Feng
    Peng, Yang
    Han, Bing
    Lu, Shaofeng
    Xue, Fei
    Li, Gan
    IEEE TRANSACTIONS ON TRANSPORTATION ELECTRIFICATION, 2024, 10 (03): : 7551 - 7564