Machine learning classification of repeating FRBs from FRB 121102

被引:2
|
作者
Raquel, Bjorn Jasper R. [1 ,2 ,3 ]
Hashimoto, Tetsuya [2 ]
Goto, Tomotsugu [4 ]
Chen, Bo Han [4 ,5 ,6 ]
Uno, Yuri [2 ]
Hsiao, Tiger Yu-Yang [4 ,7 ]
Kim, Seong Jin [4 ]
Ho, Simon C-C [4 ,8 ]
机构
[1] Rizal Technol Univ, Dept Earth & Space Sci, Boni Ave, Mandaluyong City 1550, Metro Manila, Philippines
[2] Natl Chung Hsing Univ, Dept Phys, 145,Xingda Rd, Taichung 40227, Taiwan
[3] Univ Philippines, Natl Inst Phys, Coll Sci, Quezon City 1101, Metro Manila, Philippines
[4] Natl Tsing Hua Univ, Inst Astron, 101,Sect 2,Kuang Fu Rd, Hsinchu 30013, Taiwan
[5] Natl Tsing Hua Univ, Dept Phys, 101, Sect 2,Kuang Fu Rd, Hsinchu 30013, Taiwan
[6] Seoul Natl Univ, Grad Sch Data Sci, 1,Gwanak Ro, Seoul, South Korea
[7] Johns Hopkins Univ, Dept Phys & Astron, Baltimore, MD 21218 USA
[8] Australian Natl Univ, Res Sch Astron & Astrophys, Canberra, ACT 2611, Australia
关键词
methods: data analysis; stars: magnetars; stars: neutron; (transients:) fast radio bursts; FAST RADIO-BURST; SUPERLUMINOUS SUPERNOVAE; HOST GALAXY; DURATION; MAGNETAR; LONG;
D O I
10.1093/mnras/stad1942
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Fast radio bursts (FRBs) are mysterious bursts in the millisecond time-scale at radio wavelengths. Currently, there is little understanding about the classification of repeating FRBs, based on difference in physics, which is of great importance in understanding their origin. Recent works from the literature focus on using specific parameters to classify FRBs to draw inferences on the possible physical mechanisms or properties of these FRB subtypes. In this study, we use publicly available 1652 repeating FRBs from FRB 121102 detected with the Five-hundred-metre Aperture Spherical Telescope (FAST), and studied them with an unsupervised machine learning model. By fine-tuning the hyperparameters of the model, we found that there is an indication for four clusters from the bursts of FRB 121102 instead of the two clusters ('Classical' and 'Atypical') suggested in the literature. Wherein, the 'Atypical' cluster can be further classified into three sub-clusters with distinct characteristics. Our findings show that the clustering result we obtained is more comprehensive not only because our study produced results which are consistent with those in the literature but also because our work uses more physical parameters to create these clusters. Overall, our methods and analyses produced a more holistic approach in clustering the repeating FRBs of FRB 121102.
引用
收藏
页码:1668 / 1691
页数:24
相关论文
共 50 条
  • [21] An analysis of the time-frequency structure of several bursts from FRB121102 detected with MeerKAT
    Platts, E.
    Caleb, M.
    Stappers, B. W.
    Main, R. A.
    Weltman, A.
    Shock, J. P.
    Kramer, M.
    Bezuidenhout, M. C.
    Jankowski, F.
    Morello, V
    Possenti, A.
    Rajwade, K. M.
    Rhodes, L.
    Wu, J.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2021, 505 (02) : 3041 - 3053
  • [22] A simple relationship for the spectro-temporal structure of bursts from FRB 121102
    Rajabi, Fereshteh
    Chamma, Mohammed A.
    Wyenberg, Christopher M.
    Mathews, Abhilash
    Houde, Martin
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2020, 498 (04) : 4936 - 4942
  • [23] Constraining the Earth-mass Primordial Black Hole Mergers Model of the Non-repeating FRBs Using the First CHIME/FRB Catalog
    Meng, Min
    Huang, Qiu-Ju
    Deng, Can-Min
    RESEARCH IN ASTRONOMY AND ASTROPHYSICS, 2024, 24 (09)
  • [24] Emission from a Pulsar Wind Nebula: Application to the Persistent Radio Counterpart of FRB 121102
    Yang, Yu-Han
    Dai, Zi-Gao
    ASTROPHYSICAL JOURNAL, 2019, 885 (02)
  • [25] Radio Emission from Pulsar Wind Nebulae without Surrounding Supernova Ejecta: Application to FRB 121102
    Dai, Z. G.
    Wang, J. S.
    Yu, Y. W.
    ASTROPHYSICAL JOURNAL LETTERS, 2017, 838 (01)
  • [26] A burst storm from the repeating FRB 20200120E in an M81 globular cluster
    Nimmo, K.
    Hessels, J. W. T.
    Snelders, M. P.
    Karuppusamy, R.
    Hewitt, D. M.
    Kirsten, F.
    Marcote, B.
    Bach, U.
    Bansod, A.
    Barr, E. D.
    Behrend, J.
    Bezrukovs, V
    Buttaccio, S.
    Feiler, R.
    Gawronski, M. P.
    Lindqvist, M.
    Orbidans, A.
    Puchalska, W.
    Wang, N.
    Winchen, T.
    Wolak, P.
    Wu, J.
    Yuan, J.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2023, 520 (02) : 2281 - 2305
  • [27] Periodic fast radio bursts from forcedly precessing neutron stars, anomalous torque, and internal magnetic field for FRB 180916.J0158+65 and FRB 121102
    Sob'yanin, Denis Nikolaevich
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2020, 497 (01) : 1001 - 1007
  • [28] Fast Radio Burst 121102 Pulse Detection and Periodicity: A Machine Learning Approach
    Zhang, Yunfan Gerry
    Gajjar, Vishal
    Foster, Griffin
    Siemion, Andrew
    Cordes, James
    Law, Casey
    Wang, Yu
    ASTROPHYSICAL JOURNAL, 2018, 866 (02)
  • [29] Detection of Bursts from FRB 121102 with the Effelsberg 100m Radio Telescope at 5GHz and the Role of Scintillation
    Spitler, L. G.
    Herrmann, W.
    Bower, G. C.
    Chatterjee, S.
    Cordes, J. M.
    Hessels, J. W. T.
    Kramer, M.
    Michilli, D.
    Scholz, P.
    Seymour, A.
    Siemion, A. P. V.
    ASTROPHYSICAL JOURNAL, 2018, 863 (02)
  • [30] Circularly polarized radio emission from the repeating fast radio burst source FRB 20201124A
    Kumar, P.
    Shannon, R. M.
    Lower, M. E.
    Bhandari, S.
    Deller, A. T.
    Flynn, C.
    Keane, E. F.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2022, 512 (03) : 3400 - 3413