A Scalable and Transferable Federated Learning System for Classifying Healthcare Sensor Data

被引:36
作者
Sun, Le [1 ]
Wu, Jin [1 ,2 ]
机构
[1] Nanjing Univ Informat Sci & Technol, Engn Res Ctr Digital Forens, Minist Educ, Nanjing 210044, Peoples R China
[2] Nanjing Univ Informat Sci & Technol, Dept Jiangsu Collaborat Innovat Ctr Atmospher Envi, Nanjing 210044, Peoples R China
基金
中国国家自然科学基金;
关键词
Collaborative work; Medical services; Task analysis; Feature extraction; Electrocardiography; Brain modeling; Data privacy; Federated learning; healthcare sensor data classification; Index Terms; Internet of Medical Things; privacy protection; ECG CLASSIFICATION; NEURAL-NETWORK; INFORMATION;
D O I
10.1109/JBHI.2022.3171402
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
With the development of Internet of Medical Things, massive healthcare sensor data (HSD) are transmitted in the Internet, which faces various security problems. Healthcare data are sensitive and important for patients. Automatic classification of HSD has significant value for protecting the privacy of patients. Recently, the edge computing-based federated learning has brought new opportunities and challenges. It is difficult to develop a lightweight HSD classification system for edge computing. In particular, the classification system should consider the dynamic characteristics of HSD, e.g., the change of data distributions and the appearance of initially unknown classes. To solve these problems, the paper proposes a scalable and transferable classification system, called SCALT. It is a one-classifier-per-class system based on federated learning. It comprises a one-dimensional convolution-based network for feature extraction, and an individual mini-classifier for each class. It is easy to be scaled when new class appears since only a mini-classifier will be trained. The feature extractor is updated only when it is transferred to a new task. SCALT has a parameter protection mechanism, which can avoid catastrophic forgetting in sequential HSD classification tasks. We conduct comprehensive experiments to evaluate SCALT on three different physiological signal datasets: Electrocardiogram, Electroencephalogram and Photoplethysmograph. The accuracies on the three datasets are 98.65%, 91.10% and 89.93% respectively, which are higher than the compared state-of-the-art works. At last, an application of applying SCALT to protect the privacy of patients is presented.
引用
收藏
页码:866 / 877
页数:12
相关论文
共 50 条
  • [41] Review on security of federated learning and its application in healthcare
    Li, Hao
    Li, Chengcheng
    Wang, Jian
    Yang, Aimin
    Ma, Zezhong
    Zhang, Zunqian
    Hua, Dianbo
    FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE, 2023, 144 : 271 - 290
  • [42] Deep Learning of Transferable Representation for Scalable Domain Adaptation
    Long, Mingsheng
    Wang, Jianmin
    Cao, Yue
    Sun, Jiaguang
    Yu, Philip S.
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2016, 28 (08) : 2027 - 2040
  • [43] FEDERATED LEARNING FOR INTERNET OF MEDICAL HEALTHCARE: ISSUES AND CHALLENGES
    Chelani, Nikita
    Tripathy, Shivam
    Kumhar, Malaram
    Bhatia, Jitendra
    Saxena, Varun
    Tanwar, Sudeep
    Nayyar, Anand
    SCALABLE COMPUTING-PRACTICE AND EXPERIENCE, 2024, 25 (05): : 4442 - 4455
  • [44] A Differentially Privacy Assisted Federated Learning Scheme to Preserve Data Privacy for IoMT Applications
    Barnawi, Ahmed
    Chhikara, Prateek
    Tekchandani, Rajkumar
    Kumar, Neeraj
    Alzahrani, Bander
    IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, 2024, 21 (04): : 4686 - 4700
  • [45] Handling Privacy-Sensitive Medical Data With Federated Learning: Challenges and Future Directions
    Aouedi, Ons
    Sacco, Alessio
    Piamrat, Kandaraj
    Marchetto, Guido
    IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2023, 27 (02) : 790 - 803
  • [46] Enhancing Brain Tumor Segmentation Accuracy through Scalable Federated Learning with Advanced Data Privacy and Security Measures
    Ullah, Faizan
    Nadeem, Muhammad
    Abrar, Mohammad
    Amin, Farhan
    Salam, Abdu
    Khan, Salabat
    MATHEMATICS, 2023, 11 (19)
  • [47] Federated Learning for Smart Healthcare: A Survey
    Dinh C Nguyen
    Quoc-Viet Pham
    Pathirana, Pubudu N.
    Ding, Ming
    Seneviratne, Aruna
    Lin, Zihuai
    Dobre, Octavia
    Hwang, Won-Joo
    ACM COMPUTING SURVEYS, 2023, 55 (03)
  • [48] Classifying UAVs With Proprietary Waveforms via Preamble Feature Extraction and Federated Learning
    Reus-Muns, Guillem
    Chowdhury, Kaushik
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2021, 70 (07) : 6279 - 6290
  • [49] EPFFL: Enhancing Privacy and Fairness in Federated Learning for Distributed E-Healthcare Data Sharing Services
    Liu, Jingwei
    Li, Yating
    Zhao, Mengjiao
    Liu, Lei
    Kumar, Neeraj
    IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, 2025, 22 (02) : 1239 - 1252
  • [50] Spread plus : Scalable Model Aggregation in Federated Learning With Non-IID Data
    Liang, Huanghuang
    Yang, Xin
    Han, Xiaoming
    Liu, Boan
    Hu, Chuang
    Wang, Dan
    Zhou, Xiaobo
    Cheng, Dazhao
    IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, 2025, 36 (04) : 701 - 716