A Scalable and Transferable Federated Learning System for Classifying Healthcare Sensor Data

被引:36
|
作者
Sun, Le [1 ]
Wu, Jin [1 ,2 ]
机构
[1] Nanjing Univ Informat Sci & Technol, Engn Res Ctr Digital Forens, Minist Educ, Nanjing 210044, Peoples R China
[2] Nanjing Univ Informat Sci & Technol, Dept Jiangsu Collaborat Innovat Ctr Atmospher Envi, Nanjing 210044, Peoples R China
基金
中国国家自然科学基金;
关键词
Collaborative work; Medical services; Task analysis; Feature extraction; Electrocardiography; Brain modeling; Data privacy; Federated learning; healthcare sensor data classification; Index Terms; Internet of Medical Things; privacy protection; ECG CLASSIFICATION; NEURAL-NETWORK; INFORMATION;
D O I
10.1109/JBHI.2022.3171402
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
With the development of Internet of Medical Things, massive healthcare sensor data (HSD) are transmitted in the Internet, which faces various security problems. Healthcare data are sensitive and important for patients. Automatic classification of HSD has significant value for protecting the privacy of patients. Recently, the edge computing-based federated learning has brought new opportunities and challenges. It is difficult to develop a lightweight HSD classification system for edge computing. In particular, the classification system should consider the dynamic characteristics of HSD, e.g., the change of data distributions and the appearance of initially unknown classes. To solve these problems, the paper proposes a scalable and transferable classification system, called SCALT. It is a one-classifier-per-class system based on federated learning. It comprises a one-dimensional convolution-based network for feature extraction, and an individual mini-classifier for each class. It is easy to be scaled when new class appears since only a mini-classifier will be trained. The feature extractor is updated only when it is transferred to a new task. SCALT has a parameter protection mechanism, which can avoid catastrophic forgetting in sequential HSD classification tasks. We conduct comprehensive experiments to evaluate SCALT on three different physiological signal datasets: Electrocardiogram, Electroencephalogram and Photoplethysmograph. The accuracies on the three datasets are 98.65%, 91.10% and 89.93% respectively, which are higher than the compared state-of-the-art works. At last, an application of applying SCALT to protect the privacy of patients is presented.
引用
收藏
页码:866 / 877
页数:12
相关论文
共 50 条
  • [1] Application of Robust Zero-Watermarking Scheme Based on Federated Learning for Securing the Healthcare Data
    Han, Baoru
    Jhaveri, Rutvij H.
    Wang, Han
    Qiao, Dawei
    Du, Jinglong
    IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2023, 27 (02) : 804 - 813
  • [2] Personalized Federated Learning With Adaptive Batchnorm for Healthcare
    Lu, Wang
    Wang, Jindong
    Chen, Yiqiang
    Qin, Xin
    Xu, Renjun
    Dimitriadis, Dimitrios
    Qin, Tao
    IEEE TRANSACTIONS ON BIG DATA, 2024, 10 (06) : 915 - 925
  • [3] Scalable Federated Learning with System Heterogeneity
    Ilhan, Fatih
    Su, Gong
    Wang, Qingyang
    Liu, Ling
    2023 IEEE 43RD INTERNATIONAL CONFERENCE ON DISTRIBUTED COMPUTING SYSTEMS, ICDCS, 2023, : 1037 - 1040
  • [4] A Federated Learning Based Privacy-Preserving Smart Healthcare System
    Li, Jiachun
    Meng, Yan
    Ma, Lichuan
    Du, Suguo
    Zhu, Haojin
    Pei, Qingqi
    Shen, Xuemin
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2022, 18 (03) : 2021 - 2031
  • [5] A Scalable Federated Learning Approach for Collaborative Smart Healthcare Systems With Intermittent Clients Using Medical Imaging
    Ullah, Farhan
    Srivastava, Gautam
    Xiao, Heng
    Ullah, Shamsher
    Lin, Jerry Chun-Wei
    Zhao, Yue
    IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2024, 28 (06) : 3293 - 3304
  • [6] Adoption of Federated Learning for Healthcare Informatics: Emerging Applications and Future Directions
    Patel, Vishwa Amitkumar
    Bhattacharya, Pronaya
    Tanwar, Sudeep
    Gupta, Rajesh
    Sharma, Gulshan
    Bokoro, Pitshou N.
    Sharma, Ravi
    IEEE ACCESS, 2022, 10 : 90792 - 90826
  • [7] Federated Learning for Privacy Preservation in Smart Healthcare Systems: A Comprehensive Survey
    Ali, Mansoor
    Naeem, Faisal
    Tariq, Muhammad
    Kaddoum, Georges
    IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2023, 27 (02) : 778 - 789
  • [8] Fog Computing Federated Learning System Framework for Smart Healthcare
    Guo, Yang
    Xie, Xiaolan
    Qin, Chengyou
    Wang, Yueyue
    COMPUTER SUPPORTED COOPERATIVE WORK AND SOCIAL COMPUTING, CHINESECSCW 2021, PT I, 2022, 1491 : 133 - 147
  • [9] Participant Selection for Federated Learning With Heterogeneous Data in Intelligent Transport System
    Zhao, Jianxin
    Chang, Xinyu
    Feng, Yanhao
    Liu, Chi Harold
    Liu, Ningbo
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2023, 24 (01) : 1106 - 1115
  • [10] Sustainability of Healthcare Data Analysis IoT-Based Systems Using Deep Federated Learning
    Elayan, Haya
    Aloqaily, Moayad
    Guizani, Mohsen
    IEEE INTERNET OF THINGS JOURNAL, 2022, 9 (10): : 7338 - 7346