Application of bulk silicon carbide technology in high temperature MEMS sensors

被引:9
作者
Zhai, Yanxin [1 ,3 ]
Li, Haiwang [2 ,3 ]
Wu, Hanxiao [4 ]
Tao, Zhi [2 ,3 ]
Xu, Guoqiang [2 ,3 ]
Cao, Xiaoda [1 ,3 ]
Xu, Tiantong [2 ,3 ]
机构
[1] Beihang Univ, Sch Energy & Power Engn, Beijing 100191, Peoples R China
[2] Beihang Univ, Res Inst Aeroengine, Beijing 100191, Peoples R China
[3] Natl Key Lab Sci & Technol Aero Engine Aerothermod, Beijing 100191, Peoples R China
[4] China Acad Launch Vehicle Technol, Beijing Inst Astronaut Syst Engn, Beijing 100076, Peoples R China
基金
中国国家自然科学基金;
关键词
MEMS; Silicon carbide; Bulk process; High temperature; Accelerometer; PIEZORESISTIVE PRESSURE SENSORS; INDUCTIVELY-COUPLED PLASMA; CHEMICAL-VAPOR-DEPOSITION; I-N-DIODE; SIC MEMS; 3C-SIC FILMS; SINGLE-CRYSTALLINE; OHMIC CONTACTS; THIN-FILMS; FABRICATION;
D O I
10.1016/j.mssp.2024.108137
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
-SiC is widely used in power electronics and high-temperature devices due to its comprehensive physicochemical properties, including high thermal stability, mechanical strength, etc. In recent years, the advantages of SiC for MEMS have gradually attracted the attention of researchers. However, the development of bulk SiC technology in the field of MEMS sensors has not been reviewed, especially in the fabrication and performance of MEMS bulk SiC sensors. The purpose of this review is to summarize the development status of bulk SiC materials, processes and sensors. The existing pressure sensors, accelerometers and other sensors based on SiC are reviewed. And the possible technological innovations for bulk SiC MEMS sensors are further proposed.
引用
收藏
页数:17
相关论文
共 143 条
[1]   A study on the reactive ion etching of SiC single crystals using inductively coupled plasma of SF6-based gas mixtures [J].
Ahn, SC ;
Hang, SY ;
Lee, JL ;
Moon, JH ;
Lee, BT .
METALS AND MATERIALS INTERNATIONAL, 2004, 10 (01) :103-106
[2]   Design-dependent gauge factors of highly doped n-type 4H-SiC piezoresistors [J].
Akiyama, T. ;
Briand, D. ;
de Rooij, N. F. .
JOURNAL OF MICROMECHANICS AND MICROENGINEERING, 2012, 22 (08)
[3]  
Alfaifi A., 2016, PROC 14 IEEE NEWCAS, P3, DOI DOI 10.1109/NEWCAS.2016.7604774
[4]   Simulation, fabrication and testing of bulk micromachined 6H-SiC high-g piezoresistive accelerometers [J].
Atwell, AR ;
Okojie, RS ;
Kornegay, KT ;
Roberson, SL ;
Beliveau, A .
SENSORS AND ACTUATORS A-PHYSICAL, 2003, 104 (01) :11-18
[5]   A SiC MEMS resonant strain sensor for harsh environment applications [J].
Azevedo, Robert G. ;
Jones, Debbie G. ;
Jog, Anand V. ;
Jamshidi, Babak ;
Myers, David R. ;
Chen, Li ;
Fu, Xiao-an ;
Mehregany, Mehran ;
Wijesundara, Muthu B. J. ;
Pisano, Albert P. .
IEEE SENSORS JOURNAL, 2007, 7 (3-4) :568-576
[6]   Status of silicon carbide (SiC) as a wide-bandgap semiconductor for high-temperature applications: A review [J].
Casady, JB ;
Johnson, RW .
SOLID-STATE ELECTRONICS, 1996, 39 (10) :1409-1422
[7]   Deep etching of silicon carbide for micromachining applications: Etch rates and etch mechanisms [J].
Chabert, P .
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 2001, 19 (04) :1339-1345
[8]   Reactive ion etching of silicon carbide in SF6 gas:: Detection of CF, CF2, and SiF2 etch products [J].
Chabert, P ;
Cunge, G ;
Booth, JP ;
Perrin, J .
APPLIED PHYSICS LETTERS, 2001, 79 (07) :916-918
[9]   Control of 3C-SiC/Si wafer bending by the "checker-board" carbonization method [J].
Chassagne, T ;
Ferro, G ;
Haas, H ;
Mank, H ;
Leycuras, A ;
Monteil, Y ;
Soares, F ;
Balloud, C ;
Arcade, P ;
Blanc, C ;
Peyre, H ;
Juillaguet, S ;
Camassel, J .
PHYSICA STATUS SOLIDI A-APPLICATIONS AND MATERIALS SCIENCE, 2005, 202 (04) :524-530
[10]   Titanium and aluminum-titanium ohmic contacts to p-type SiC [J].
Crofton, J ;
Beyer, L ;
Williams, JR ;
Luckowski, ED ;
Mohney, SE ;
Delucca, JM .
SOLID-STATE ELECTRONICS, 1997, 41 (11) :1725-1729