Extendability of automorphisms of K3 surfaces

被引:0
作者
Matsumoto, Yuya [1 ]
机构
[1] Tokyo Univ Sci, Dept Math, Fac Sci & Technol, 2641 Yamazaki, Noda, Chiba 2788510, Japan
关键词
GOOD REDUCTION; FINITE-GROUPS;
D O I
10.4310/MRL.2023.v30.n3.a9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A K3 surface X over a p-adic field K is said to have good reduction if it admits a proper smooth model over the ring of integers of K. Assuming this, we say that a subgroup G of Aut(X) is extendable if X admits a proper smooth model equipped with G-action (compatible with the action on X). We show that G is extendable if it is of finite order prime to p and acts symplectically (that is, preserves the global 2-form on X). The proof relies on birational geometry of models of K3 surfaces, and equivariant simultaneous resolutions of certain singularities. We also give some examples of non-extendable actions.
引用
收藏
页数:44
相关论文
共 46 条
[31]   Mathieu moonshine and symmetries of K3 sigma models [J].
Hohenegger, Stefan .
STRINGS, GAUGE FIELDS, AND THE GEOMETRY BEHIND: THE LEGACY OF MAXIMILIAN KREUZER, 2013, :315-328
[32]   The Conway Moonshine Module is a reflected K3 theory [J].
Taormina, Anne ;
Wendland, Katrin .
ADVANCES IN THEORETICAL AND MATHEMATICAL PHYSICS, 2020, 24 (05) :1247-1323
[33]   Note on twisted elliptic genus of K3 surface [J].
Eguchi, Tohru ;
Hikami, Kazuhiro .
PHYSICS LETTERS B, 2011, 694 (4-5) :446-455
[34]   W=0 Complex Structure Moduli Stabilization on CM-type K3 x K3 Orbifolds: Arithmetic, Geometry and Particle Physics [J].
Kanno, Keita ;
Watari, Taizan .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2023, 398 (02) :703-756
[35]   Classification of Degenerations of Codimension ≤ 5 and Their Picard Lattices for Kahlerian K3 Surfaces with the Symplectic Automorphism Group (C2)2 [J].
Nikulin, Viacheslav V. .
PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS, 2023, 320 (01) :172-225
[36]   Notes on the K3 Surface and the Mathieu Group M24 [J].
Eguchi, Tohru ;
Ooguri, Hirosi ;
Tachikawa, Yuji .
EXPERIMENTAL MATHEMATICS, 2011, 20 (01) :91-96
[37]   Period map of a certain K3 family with an G5-action [J].
Hashimoto, Kenji ;
Terasoma, Tomohide .
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2011, 652 :1-65
[38]   Non-liftability of automorphism groups of a K3 surface in positive characteristic [J].
Esnault, Helene ;
Oguiso, Keiji .
MATHEMATISCHE ANNALEN, 2015, 363 (3-4) :1187-1206
[39]   On the orders of largest groups of automorphisms of compact Riemann surfaces [J].
Baginski, Czeslaw ;
Gromadzki, Grzegorz .
JOURNAL OF PURE AND APPLIED ALGEBRA, 2021, 225 (12)
[40]   A K3 sigma model with Z28: M20 symmetry [J].
Gaberdiel, Matthias R. ;
Taormina, Anne ;
Volpato, Roberto ;
Wendland, Katrin .
JOURNAL OF HIGH ENERGY PHYSICS, 2014, (02)