Extendability of automorphisms of K3 surfaces

被引:0
作者
Matsumoto, Yuya [1 ]
机构
[1] Tokyo Univ Sci, Dept Math, Fac Sci & Technol, 2641 Yamazaki, Noda, Chiba 2788510, Japan
关键词
GOOD REDUCTION; FINITE-GROUPS;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A K3 surface X over a p-adic field K is said to have good reduction if it admits a proper smooth model over the ring of integers of K. Assuming this, we say that a subgroup G of Aut(X) is extendable if X admits a proper smooth model equipped with G-action (compatible with the action on X). We show that G is extendable if it is of finite order prime to p and acts symplectically (that is, preserves the global 2-form on X). The proof relies on birational geometry of models of K3 surfaces, and equivariant simultaneous resolutions of certain singularities. We also give some examples of non-extendable actions.
引用
收藏
页数:44
相关论文
共 46 条
[11]   Symmetric symplectic homotopy K3 surfaces [J].
Chen, Weimin ;
Kwasik, Slawomir .
JOURNAL OF TOPOLOGY, 2011, 4 (02) :406-430
[12]   Lecture notes on K3 and Enriques surfaces [J].
Mukai, Shigeru .
CONTRIBUTIONS TO ALGEBRAIC GEOMETRY: IMPANGA LECTURE NOTES, 2012, :389-405
[13]   Good reduction criterion for K3 surfaces [J].
Matsumoto, Yuya .
MATHEMATISCHE ZEITSCHRIFT, 2015, 279 (1-2) :241-266
[14]   ON GOOD REDUCTION OF SOME K3 SURFACES RELATED TO ABELIAN SURFACES [J].
Matsumoto, Yuya .
TOHOKU MATHEMATICAL JOURNAL, 2015, 67 (01) :83-104
[15]   Kahlerian K3 surfaces and Niemeier lattices, II [J].
Nikulin, Viacheslav V. .
DEVELOPMENT OF MODULI THEORY - KYOTO 2013, 2016, 69 :421-471
[16]   On Symplectic Automorphisms of Hyper-Kahler Fourfolds of K3[2] Type [J].
Mongardi, Giovanni .
MICHIGAN MATHEMATICAL JOURNAL, 2013, 62 (03) :537-550
[17]   On a cohomological generalization of the Shafarevich conjecture for K3 surfaces [J].
Takamatsu, Teppei .
ALGEBRA & NUMBER THEORY, 2020, 14 (09) :2505-2531
[18]   K3 surfaces with a symplectic automorphism of order 11 [J].
Dolgachev, Igor V. ;
Keum, JongHae .
JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2009, 11 (04) :799-818
[19]   Kahlerian K3 surfaces and Niemeier lattices. I [J].
Nikulin, V. V. .
IZVESTIYA MATHEMATICS, 2013, 77 (05) :954-997
[20]   A Neron-Ogg-Shafarevich criterion for K3 surfaces [J].
Chiarellotto, Bruno ;
Lazda, Christopher ;
Liedtke, Christian .
PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2019, 119 (02) :469-514