Extendability of automorphisms of K3 surfaces

被引:0
|
作者
Matsumoto, Yuya [1 ]
机构
[1] Tokyo Univ Sci, Dept Math, Fac Sci & Technol, 2641 Yamazaki, Noda, Chiba 2788510, Japan
关键词
GOOD REDUCTION; FINITE-GROUPS;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A K3 surface X over a p-adic field K is said to have good reduction if it admits a proper smooth model over the ring of integers of K. Assuming this, we say that a subgroup G of Aut(X) is extendable if X admits a proper smooth model equipped with G-action (compatible with the action on X). We show that G is extendable if it is of finite order prime to p and acts symplectically (that is, preserves the global 2-form on X). The proof relies on birational geometry of models of K3 surfaces, and equivariant simultaneous resolutions of certain singularities. We also give some examples of non-extendable actions.
引用
收藏
页数:44
相关论文
共 50 条
  • [1] Orders of automorphisms of K3 surfaces
    Keum, JongHae
    ADVANCES IN MATHEMATICS, 2016, 303 : 39 - 87
  • [2] Dynamics of automorphisms of K3 surfaces
    Cantat, S
    ACTA MATHEMATICA, 2001, 187 (01) : 1 - 57
  • [3] On automorphisms of supersingular K3 surfaces
    Ito, H
    OSAKA JOURNAL OF MATHEMATICS, 1997, 34 (03) : 717 - 724
  • [4] Finite subgroups of automorphisms of K3 surfaces
    Brandhorst, Simon
    Hofmann, Tommy
    FORUM OF MATHEMATICS SIGMA, 2023, 11
  • [5] K3 Surfaces with Order 11 Automorphisms
    Oguiso, Keiji
    Zhang, De-Qi
    PURE AND APPLIED MATHEMATICS QUARTERLY, 2011, 7 (04) : 1657 - 1673
  • [6] Order 9 automorphisms of K3 surfaces
    Artebani, Michela
    Comparin, Paola
    Valdes, Maria Elisa
    COMMUNICATIONS IN ALGEBRA, 2020, 48 (09) : 3661 - 3672
  • [7] K3 surfaces with order five automorphisms
    Oguiso, K
    Zhang, DQ
    JOURNAL OF MATHEMATICS OF KYOTO UNIVERSITY, 1998, 38 (03): : 419 - 438
  • [8] K3 surfaces with interesting groups of automorphisms
    Nikulin V.V.
    Journal of Mathematical Sciences, 1999, 95 (1) : 2028 - 2048
  • [9] Order 40 automorphisms of K3 surfaces
    Keum, JongHae
    DEVELOPMENT OF MODULI THEORY - KYOTO 2013, 2016, 69 : 407 - 419
  • [10] Order 3 symplectic automorphisms on K3 surfaces
    Garbagnati, Alice
    Montanez, Yulieth Prieto
    MATHEMATISCHE ZEITSCHRIFT, 2022, 301 (01) : 225 - 253