Towards Understanding Alerts raised by Unsupervised Network Intrusion Detection Systems

被引:3
作者
Lanvin, Maxime [1 ]
Gimenez, Pierre-Francois [1 ]
Han, Yufei [2 ]
Majorczyk, Frederic [3 ]
Me, Ludovic [2 ]
Totel, Eric [4 ]
机构
[1] Univ Rennes, IRISA, Cent Supelec, Rennes, France
[2] Univ Rennes, IRISA, INRIA, Rennes, France
[3] Univ Rennes, IRISA, DGA MI, Rennes, France
[4] Telecom SudParis, Inst Polytech Paris, Samovar, Palaiseau, France
来源
PROCEEDINGS OF THE 26TH INTERNATIONAL SYMPOSIUM ON RESEARCH IN ATTACKS, INTRUSIONS AND DEFENSES, RAID 2023 | 2023年
关键词
intrusion detection; machine learning; explainable AI (XAI); AUTOENCODER;
D O I
10.1145/3607199.3607247
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The use of Machine Learning for anomaly detection in cyber security-critical applications, such as intrusion detection systems, has been hindered by the lack of explainability. Without understanding the reason behind anomaly alerts, it is too expensive or impossible for human analysts to verify and identify cyber-attacks. Our research addresses this challenge and focuses on unsupervised network intrusion detection, where only benign network traffic is available for training the detection model. We propose a novel post-hoc explanation method, called AE-pvalues, which is based on the p-values of the reconstruction errors produced by an Auto-Encoder-based anomaly detection method. Our work identifies the most informative network traffic features associated with an anomaly alert, providing interpretations for the generated alerts. We conduct an empirical study using a large-scale network intrusion dataset, CICIDS2017, to compare the proposed AE-pvalues method with two state-of-the-art baselines applied in the unsupervised anomaly detection task. Our experimental results show that the AE-pvalues method accurately identifies abnormal influential network traffic features. Furthermore, our study demonstrates that the explanation outputs can help identify different types of network attacks in the detected anomalies, enabling human security analysts to understand the root cause of the anomalies and take prompt action to strengthen security measures.
引用
收藏
页码:135 / 150
页数:16
相关论文
共 24 条
[1]   Peeking Inside the Black-Box: A Survey on Explainable Artificial Intelligence (XAI) [J].
Adadi, Amina ;
Berrada, Mohammed .
IEEE ACCESS, 2018, 6 :52138-52160
[2]   Towards an Interpretable Autoencoder: A Decision-Tree-Based Autoencoder and its Application in Anomaly Detection [J].
Aguilar, Diana Laura ;
Medina-Perez, Miguel Angel ;
Loyola-Gonzalez, Octavio ;
Choo, Kim-Kwang Raymond ;
Bucheli-Susarrey, Edoardo .
IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, 2023, 20 (02) :1048-1059
[3]   Network intrusion detection system: A systematic study of machine learning and deep learning approaches [J].
Ahmad, Zeeshan ;
Shahid Khan, Adnan ;
Wai Shiang, Cheah ;
Abdullah, Johari ;
Ahmad, Farhan .
TRANSACTIONS ON EMERGING TELECOMMUNICATIONS TECHNOLOGIES, 2021, 32 (01)
[4]   ROULETTE: A neural attention multi-output model for explainable Network Intrusion Detection [J].
Andresini, Giuseppina ;
Appice, Annalisa ;
Caforio, Francesco Paolo ;
Malerba, Donato ;
Vessio, Gennaro .
EXPERT SYSTEMS WITH APPLICATIONS, 2022, 201
[5]   Explaining anomalies detected by autoencoders using Shapley Additive Explanations [J].
Antwarg, Liat ;
Miller, Ronnie Mindlin ;
Shapira, Bracha ;
Rokach, Lior .
EXPERT SYSTEMS WITH APPLICATIONS, 2021, 186
[6]   A Semi-supervised Stacked Autoencoder Approach for Network Traffic Classification [J].
Aouedi, Ons ;
Piamrat, Kandaraj ;
Bagadthey, Dhruvjyoti .
2020 IEEE 28TH INTERNATIONAL CONFERENCE ON NETWORK PROTOCOLS (IEEE ICNP 2020), 2020,
[7]   Photosynthetic Control of Atmospheric Carbonyl Sulfide During the Growing Season [J].
Campbell, J. E. ;
Carmichael, G. R. ;
Chai, T. ;
Mena-Carrasco, M. ;
Tang, Y. ;
Blake, D. R. ;
Blake, N. J. ;
Vay, S. A. ;
Collatz, G. J. ;
Baker, I. ;
Berry, J. A. ;
Montzka, S. A. ;
Sweeney, C. ;
Schnoor, J. L. ;
Stanier, C. O. .
SCIENCE, 2008, 322 (5904) :1085-1088
[8]   Explainable artificial intelligence for cybersecurity: a literature survey [J].
Charmet, Fabien ;
Tanuwidjaja, Harry Chandra ;
Ayoubi, Solayman ;
Gimenez, Pierre-Francois ;
Han, Yufei ;
Jmila, Houda ;
Blanc, Gregory ;
Takahashi, Takeshi ;
Zhang, Zonghua .
ANNALS OF TELECOMMUNICATIONS, 2022, 77 (11-12) :789-812
[9]  
Crammer K., 2004, P 21 INT C MACHINE L, P26
[10]   Explainable Anomaly Detection for Industrial Control System Cybersecurity [J].
Do Thu Ha ;
Nguyen Xuan Hoang ;
Nguyen Viet Hoang ;
Nguyen Huu Du ;
Truong Thu Huong ;
Kim Phuc Tran .
IFAC PAPERSONLINE, 2022, 55 (10) :1183-1188