End-to-end material thermal conductivity prediction through machine learning

被引:9
作者
Srivastava, Yagyank [1 ]
Jain, Ankit [1 ]
机构
[1] Indian Inst Technol, Mech Engn Dept, Mumbai, India
关键词
CHALCOGENIDES; DISCOVERY; TRANSPORT; NETWORKS;
D O I
10.1063/5.0183513
中图分类号
O59 [应用物理学];
学科分类号
摘要
We investigated the accelerated prediction of the thermal conductivity of materials through end-to-end structure-based approaches employing machine learning methods. Due to the non-availability of high-quality thermal conductivity data, we first performed high-throughput calculations based on first principles and the Boltzmann transport equation for 225 materials, effectively more than doubling the size of the existing dataset. We assessed the performance of state-of-the-art machine learning models for thermal conductivity prediction on this expanded dataset and observed that all these models suffered from overfitting. To address this issue, we introduced a different graph-based neural network model, which demonstrated more consistent and regularized performance across all evaluated datasets. Nevertheless, the best mean absolute percentage error achieved on the test dataset remained in the range of 50-60%. This suggests that while these models are valuable for expediting material screening, their current accuracy is still limited.
引用
收藏
页数:9
相关论文
共 60 条
[1]   Phonons and related crystal properties from density-functional perturbation theory [J].
Baroni, S ;
de Gironcoli, S ;
Dal Corso, A ;
Giannozzi, P .
REVIEWS OF MODERN PHYSICS, 2001, 73 (02) :515-562
[2]   Graph Networks as a Universal Machine Learning Framework for Molecules and Crystals [J].
Chen, Chi ;
Ye, Weike ;
Zuo, Yunxing ;
Zheng, Chen ;
Ong, Shyue Ping .
CHEMISTRY OF MATERIALS, 2019, 31 (09) :3564-3572
[3]   Materials selection guidelines for low thermal conductivity thermal barrier coatings [J].
Clarke, DR .
SURFACE & COATINGS TECHNOLOGY, 2003, 163 :67-74
[4]  
Sendek AD, 2018, Arxiv, DOI arXiv:1808.02470
[5]  
Dames C., 2005, Thermoelectrics Handbook: Macro to Nano, P421
[6]   Low lattice thermal conductivity and promising thermoelectric figure of merit of Zintl type TlInTe2+ [J].
Ding, Guangqian ;
He, Junjie ;
Cheng, Zhenxiang ;
Wang, Xiaotian ;
Li, Shuo .
JOURNAL OF MATERIALS CHEMISTRY C, 2018, 6 (48) :13269-13274
[7]   Ultralow lattice thermal conductivity in topological insulator TlBiSe2 [J].
Ding, Guangqian ;
Carrete, Jesus ;
Li, Wu ;
Gao, G. Y. ;
Yao, Kailun .
APPLIED PHYSICS LETTERS, 2016, 108 (23)
[8]   Heat transport in silicon from first-principles calculations [J].
Esfarjani, Keivan ;
Chen, Gang ;
Stokes, Harold T. .
PHYSICAL REVIEW B, 2011, 84 (08)
[9]   Method to extract anharmonic force constants from first principles calculations [J].
Esfarjani, Keivan ;
Stokes, Harold T. .
PHYSICAL REVIEW B, 2008, 77 (14)
[10]   QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials [J].
Giannozzi, Paolo ;
Baroni, Stefano ;
Bonini, Nicola ;
Calandra, Matteo ;
Car, Roberto ;
Cavazzoni, Carlo ;
Ceresoli, Davide ;
Chiarotti, Guido L. ;
Cococcioni, Matteo ;
Dabo, Ismaila ;
Dal Corso, Andrea ;
de Gironcoli, Stefano ;
Fabris, Stefano ;
Fratesi, Guido ;
Gebauer, Ralph ;
Gerstmann, Uwe ;
Gougoussis, Christos ;
Kokalj, Anton ;
Lazzeri, Michele ;
Martin-Samos, Layla ;
Marzari, Nicola ;
Mauri, Francesco ;
Mazzarello, Riccardo ;
Paolini, Stefano ;
Pasquarello, Alfredo ;
Paulatto, Lorenzo ;
Sbraccia, Carlo ;
Scandolo, Sandro ;
Sclauzero, Gabriele ;
Seitsonen, Ari P. ;
Smogunov, Alexander ;
Umari, Paolo ;
Wentzcovitch, Renata M. .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2009, 21 (39)