A study of the q-analogue of the paranormed Cesàro sequence spaces

被引:0
|
作者
Srivastava, H. M. [1 ,2 ,3 ,4 ,5 ,6 ]
Yaying, Taja [7 ]
Hazarika, Bipan [8 ]
机构
[1] Univ Victoria, Dept Math & Stat, Victoria, BC V8W 3R4, Canada
[2] China Med Univ, China Med Univ Hosp, Dept Med Res, Taichung 40402, Taiwan
[3] Kyung Hee Univ, Ctr Converging Humanities, 26 Kyungheedae Ro, Seoul 02447, South Korea
[4] Azerbaijan Univ, Dept Math & Informat, 71 Jeyhun Hajibeyli St, AZ-1007 Baku, Azerbaijan
[5] Chung Yuan Christian Univ, Dept Appl Math, Taoyuan City 320314, Taiwan
[6] Int Telemat Univ Uninettuno, Sect Math, I-00186 Rome, Italy
[7] Dera Natung Govt Coll, Dept Math, Itanagar 791113, Arunachal Prade, India
[8] Gauhati Univ, Dept Math, Gauhati 781014, Assam, India
关键词
Paranormed sequence spaces; q-Analysis and q-Theory; q-Cesaro matrix; Schauder basis; alpha- beta- and gamma-duals; Matrix mappings; Matrix transformations; MATRIX TRANSFORMATIONS;
D O I
10.2298/FIL2401099S
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article, we introduce and investigate the q-Cesaro matrix C(q)=(cquv) with q is an element of(0,1) for which we have c(uv)(q)= {q(v)/[u+1](q )(0 <= v <= u) 0 (v>u)where the q-number [kappa](q)is given, as usual in theq-theory, by[kappa]q:={1-q(kappa)/1-q (kappa is an element of C)(n-1)Sigma P(k=0)q(k)=1+q+q2+<middle dot><middle dot><middle dot>+q(n-1) (kappa=n is an element of N), CandNbeing the sets of complex numbers and positive integers, respectively. Theq-Ces`aro matrixC(q) isaq-analogue of the Ces`aro matrixC1. We study the sequence spacesXq(p),Xq0(p),Xqc(p) andXq infinity(p), which areobtained by the domain of the matrixC(q) in the Maddox spaces & ell;(p),c0(p),c(p) and & ell;infinity(p),respectively. Wederive the Schauder basis and the alpha-, beta- and gamma-duals of these newly-defined spaces. Moreover,we state and prove several theorems characterizing matrix transformation from the spacesXq(p),Xq0(p),Xqc(p)andXq infinity(p) to anyone of the spacesc0,cor & ell;infinity
引用
收藏
页码:99 / 117
页数:19
相关论文
共 50 条
  • [1] A study on q-analogue of Catalan sequence spaces
    Yaying, Taja
    Kara, Merve Ilkhan
    Hazarika, Bipan
    Kara, Emrah Evren
    FILOMAT, 2023, 37 (03) : 839 - 850
  • [2] Infinite matrices and Cesàro sequence spacesБесконечные матрицы и пространства последователяностеи Чеэаро
    F. M. Khan
    M. F. Rahman
    Ф. М. Хан
    М. Ф. Рахман
    Analysis Mathematica, 1997, 23 (1) : 3 - 11
  • [3] On Cesàro and Copson sequence spaces with weights
    S. H. Saker
    Maryam M. Abuelwafa
    Ahmed M. Zidan
    Dumitru Baleanu
    Journal of Inequalities and Applications, 2021
  • [4] Cesàro sequence spaces via (p, q)-calculus and compact matrix operators
    Taja Yaying
    Bipan Hazarika
    Mohammad Mursaleen
    The Journal of Analysis, 2022, 30 : 1535 - 1553
  • [5] Exploring the q-analogue of Fibonacci sequence spaces associated with c and c0
    Yaying, Taja
    Mohiuddine, S. A.
    Aljedani, Jabr
    AIMS MATHEMATICS, 2025, 10 (01): : 634 - 653
  • [6] Cesàro q-Difference Sequence Spaces and Spectrum of Weighted q-Difference Operator
    Yaying, Taja
    Hazarika, Bipan
    Baliarsingh, Pinakadhar
    Mursaleen, Mohammad
    BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2024, 50 (02)
  • [7] q-analogue of a new sequence of linear positive operators
    Gupta, Vijay
    Kim, Taekyun
    Lee, Sang-Hun
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2012,
  • [8] A q-Analogue of the Bi-Periodic Fibonacci Sequence
    Ramirez, Jose L.
    Sirvent, Victor F.
    JOURNAL OF INTEGER SEQUENCES, 2016, 19 (04)
  • [9] q-analogue of a new sequence of linear positive operators
    Vijay Gupta
    Taekyun Kim
    Sang-Hun Lee
    Journal of Inequalities and Applications, 2012
  • [10] Packing constant for Cesàro-Orlicz sequence spaces
    Zhen-Hua Ma
    Li-Ning Jiang
    Qiao-Ling Xin
    Czechoslovak Mathematical Journal, 2016, 66 : 13 - 25