For cervical cancer diagnosis: Tissue Raman spectroscopy and multi-level feature fusion with SENet attention mechanism

被引:11
作者
Liu, Yang [1 ]
Chen, Chen [2 ,4 ]
Xie, Xiaodong [5 ]
Lv, Xiaoyi [1 ,3 ]
Chen, Cheng [1 ]
机构
[1] Xinjiang Univ, Coll Software, Urumqi 830046, Peoples R China
[2] Xinjiang Univ, Coll Informat Sci & Engn, Urumqi 830046, Peoples R China
[3] Xinjiang Univ, Key Lab Signal Detect & Proc, Urumqi 830046, Peoples R China
[4] Xinjiang Cloud Comp Applicat Lab, Karamay 834099, Peoples R China
[5] Xinjiang Uygur Autonomous Reg Peoples Hosp, Urumqi 830046, Peoples R China
关键词
Raman spectroscopy; Multi -level feature fusion; Attention mechanism; Cervical cancer; VIBRATIONAL SPECTROSCOPY; PATHOLOGY;
D O I
10.1016/j.saa.2023.123147
中图分类号
O433 [光谱学];
学科分类号
0703 ; 070302 ;
摘要
Cervical cancer ranks among the most prevalent forms of gynecological malignancies. Timely identification of cervical lesions and prompt intervention can effectively prevent the development of cervical cancer or enhance patients' chances of survival. In this study, we propose an innovative method based on Raman spectroscopy, i.e., a multi-level SENet attention mechanism feature fusion architecture (MAFA) for rapid diagnosis of cervical cancer and precancerous lesions. The convolution process of this architecture can extract features from shallow to deep layers, and the attention mechanism is added to achieve the fusion of features from different layers. The added attention mechanism can automatically determine the importance of each layer feature channel and assign weight values to that layer according to the importance of each layer to achieve the purpose of focusing the model on certain waveform features and improve the targeting of model learning. We collected Raman spectra of 212 cervical tissues containing cervical cancer and its precancerous lesions.The experimental results show that MAFA can effectively improve the diagnostic accuracy of VGGNet, GoogLeNet and ResNet models in the validation of Raman spectral data of cervical tissue. Among them, ResNet performed the best, with the highest average accuracy, precision, recall and F1-Score of 82.36%, 84.00%, 82.35% and 82.26%, respectively, when no feature fusion was performed. The evaluation metrics improved by 4.91%, 3.97%, 4.97%, and 5.06%,respectively, after using the MAFA; they also improved by 4.16%, 2.90%, 4.17%, and 4.32%, respectively, compared with the model that directly performs feature fusion without using the attention mechanism. There-fore, the MAFA proposed in this study is better than that of the neural network that directly fuses the features of each convolutional layer. The experimental results show that the performance of the MAFA proposed in this paper is significantly higher than that of traditional deep learning algorithms, indicating that the present ar-chitecture can effectively improve the diagnostic accuracy of deep learning networks for cervical cancer.
引用
收藏
页数:10
相关论文
共 53 条
[1]   Applications of Raman spectroscopy in cancer diagnosis [J].
Auner, Gregory W. ;
Koya, S. Kiran ;
Huang, Changhe ;
Broadbent, Brandy ;
Trexler, Micaela ;
Auner, Zachary ;
Elias, Angela ;
Mehne, Katlyn Curtin ;
Brusatori, Michelle A. .
CANCER AND METASTASIS REVIEWS, 2018, 37 (04) :691-717
[2]   Comparative transcriptomic profiling in HPV-associated cervical carcinogenesis: Implication of MHC class II and immunoglobulin heavy chain genes [J].
Balasubramaniam, Shandra Devi ;
Wong, Kah Keng ;
Oon, Chern Ein ;
Balakrishnan, Venugopal ;
Kaur, Gurjeet .
LIFE SCIENCES, 2020, 256
[3]   Key Molecular Events in Cervical Cancer Development [J].
Balasubramaniam, Shandra Devi ;
Balakrishnan, Venugopal ;
Oon, Chern Ein ;
Kaur, Gurjeet .
MEDICINA-LITHUANIA, 2019, 55 (07)
[4]   Estimating the impact of an organised screening programme on cervical cancer incidence: A 26-year study from northern Italy [J].
Bucchi, Lauro ;
Baldacchini, Flavia ;
Mancini, Silvia ;
Ravaioli, Alessandra ;
Giuliani, Orietta ;
Vattiato, Rosa ;
Falcini, Fabio ;
Rossi, Paolo Giorgi ;
Campari, Cinzia ;
Canuti, Debora ;
Di Felice, Enza ;
de Bianchi, Priscilla Sassoli ;
Ferretti, Stefano ;
Bertozzi, Nicoletta ;
Biggeri, Annibale ;
Bertozzi, Nicoletta ;
Di Felice, Enza ;
Ferretti, Stefano ;
Finarelli, Alba Carola ;
Naldoni, Carlo ;
de Bianchi, Priscilla Sassoli ;
Baldacchini, Flavia ;
Bucchi, Lauro ;
Giuliani, Orietta ;
Mancini, Silvia ;
Ravaioli, Alessandra ;
Vattiato, Rosa ;
Falcini, Fabio ;
Borciani, Elisabetta ;
Dataro, Pier Giorgio ;
Gatti, Giorgio ;
Lauri, Alessandro ;
Lombardozzi, Luigi ;
Michiara, Maria ;
Mangone, Lucia ;
Campari, Cinzia ;
Paterlini, Luisa ;
Rubino, Teresa ;
Andresini, Raffaella ;
Carrozzi, Giuliano ;
Corradini, Rossella ;
Goldoni, Carlo Alberto ;
Venturelli, Agar ;
Vezzani, Maria Dirce ;
Bazzani, Carmen ;
Biavati, Patrizia ;
Cristiani, Paolo ;
Manfredi, Marilena ;
Mezzetti, Francesca ;
Pasquini, Adriana .
INTERNATIONAL JOURNAL OF CANCER, 2019, 144 (05) :1017-1026
[5]   Raman spectroscopy and multivariate analysis as potential tool to follow Alzheimer's disease progression [J].
Carota, Angela Gilda ;
Campanella, Beatrice ;
Del Carratore, Renata ;
Bongioanni, Paolo ;
Giannelli, Roberta ;
Legnaioli, Stefano .
ANALYTICAL AND BIOANALYTICAL CHEMISTRY, 2022, 414 (16) :4667-4675
[6]   Introduction of Human Papillomavirus DNA Screening in the World: 15 Years of Experience [J].
Castle, Philip E. ;
de Sanjose, Silvia ;
Qiao, You-Lin ;
Belinson, Jerome L. ;
Lazcano-Ponce, Eduardo ;
Kinney, Walter .
VACCINE, 2012, 30 :F117-F122
[7]   Rapid detection of seven indexes in sheep serum based on Raman spectroscopy combined with DOSC-SPA-PLSR-DS model [J].
Chen, Fangfang ;
Chen, Chen ;
Li, Wenrong ;
Xiao, Meng ;
Yang, Bo ;
Yan, Ziwei ;
Gao, Rui ;
Zhang, Shuailei ;
Han, Huijie ;
Chen, Cheng ;
Lv, Xiaoyi .
SPECTROCHIMICA ACTA PART A-MOLECULAR AND BIOMOLECULAR SPECTROSCOPY, 2021, 248
[8]   Serum Raman spectroscopy combined with a multi-feature fusion convolutional neural network diagnosing thyroid dysfunction [J].
Chen, Hao ;
Chen, Cheng ;
Wang, Hang ;
Chen, Chen ;
Guo, Zhiqi ;
Tong, Dongni ;
Li, Hongmei ;
Li, Hongyi ;
Si, Rumeng ;
Lai, Huicheng ;
Lv, Xiaoyi .
OPTIK, 2020, 216
[9]   Cancer Statistics in China, 2015 [J].
Chen, Wanqing ;
Zheng, Rongshou ;
Baade, Peter D. ;
Zhang, Siwei ;
Zeng, Hongmei ;
Bray, Freddie ;
Jemal, Ahmedin ;
Yu, Xue Qin ;
He, Jie .
CA-A CANCER JOURNAL FOR CLINICIANS, 2016, 66 (02) :115-132
[10]   Near-infrared Raman spectroscopy for estimating biochemical changes associated with different pathological conditions of cervix [J].
Daniel, Amuthachelvi ;
Prakasarao, Aruna ;
Ganesan, Singaravelu .
SPECTROCHIMICA ACTA PART A-MOLECULAR AND BIOMOLECULAR SPECTROSCOPY, 2018, 190 :409-416