Low-RCS Transmitarray Based on 2.5-D Cross-Polarization Converter

被引:18
作者
Li, Mengyao [1 ]
Shen, Zhongxiang [1 ]
机构
[1] Nanyang Technol Univ, Sch Elect & Elect Engn, Singapore 639798, Singapore
关键词
Absorptive frequency-selective structure; cross-polarization converter; radar cross section (RCS); transmitarray; WIDE-BAND TRANSMITARRAY; SQUARE-LOOP; ANTENNA; REFLECTARRAY; DESIGN;
D O I
10.1109/TAP.2023.3271149
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This article presents a low radar cross section (RCS) transmitarray with absorption-transmission-absorption frequency response. In contrast to conventional transmitarrays based on multilayer metallic patterns, a 2.5-D cross polarization converter is employed to provide a large phase shifting range of high transmission efficiency. A benchmark transmitarray composed of the polarizer element with an aperture thickness of 2.3 mm (0.08?) is designed to achieve a focused radiation beam. As a result, its peak gain is 22.1 dB and maximum aperture efficiency is 57.6%. Next, a low-RCS transmitarray is designed by introducing a lossy layer to absorb the out-of-band incident waves. Compared with the benchmark antenna, the radiation performance of the low-RCS transmitarray is maintained with a peak gain of 21.7 dB and maximum aperture efficiency of 53.7%. Meanwhile, dual-polarized significant RCS reduction can be obtained at both lower and higher frequencies.
引用
收藏
页码:5828 / 5837
页数:10
相关论文
共 40 条
[1]   High-Gain and Broadband Transmitarray Antenna Using Triple-Layer Spiral Dipole Elements [J].
Abdelrahman, Ahmed H. ;
Elsherbeni, Atef Z. ;
Yang, Fan .
IEEE ANTENNAS AND WIRELESS PROPAGATION LETTERS, 2014, 13 :1288-1291
[2]   Transmission Phase Limit of Multilayer Frequency-Selective Surfaces for Transmitarray Designs [J].
Abdelrahman, Ahmed H. ;
Elsherbeni, Atef Z. ;
Yang, Fan .
IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2014, 62 (02) :690-697
[3]  
Berry D., 1963, IEEE Transactions on Antennas and Propagation, V11, P645
[4]   High-Efficiency Metasurface With Polarization-Dependent Transmission and Reflection Properties for Both Reflectarray and Transmitarray [J].
Cai, Tong ;
Wang, Guang-Ming ;
Fu, Xiao-Long ;
Liang, Jian-Gang ;
Zhuang, Ya-Qiang .
IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2018, 66 (06) :3219-3224
[5]   A Novel Ultrawideband Transmitarray Design Using Tightly Coupled Dipole Elements [J].
Cai, Yuan-Ming ;
Li, Wenting ;
Li, Ke ;
Gao, Steven ;
Yin, Yingzeng ;
Zhao, Luyu ;
Hu, Wei .
IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2019, 67 (01) :242-250
[6]   Electromagnetic Chirality, Part 1: The Microscopic Perspective [Electromagnetic Perspectives] [J].
Caloz, Christophe ;
Sihvola, Ari .
IEEE ANTENNAS AND PROPAGATION MAGAZINE, 2020, 62 (01) :58-71
[7]   A Broadband Low-Profile Transmitarray Antenna by Using Differentially Driven Transmission Polarizer With True-Time Delay [J].
Cao, Yue ;
Yang, Wanchen ;
Xue, Quan ;
Che, Wenquan .
IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2022, 70 (02) :1529-1534
[8]   Frequency-Selective Rasorber With Interabsorption Band Transparent Window and Interdigital Resonator [J].
Chen, Qiang ;
Sang, Di ;
Guo, Min ;
Fu, Yunqi .
IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2018, 66 (08) :4105-4114
[9]   Broadband planar Luneburg lens based on complementary metamaterials [J].
Cheng, Qiang ;
Ma, Hui Feng ;
Cui, Tie Jun .
APPLIED PHYSICS LETTERS, 2009, 95 (18)
[10]   A Transmissive Frequency-Reconfigurable Cross-Polarization Conversion Surface [J].
Fei, Peng ;
Guo, Weihua ;
Hu, Wei ;
Zheng, Qi ;
Wen, Xin ;
Chen, Xing ;
Vandenbosch, Guy A. E. .
IEEE ANTENNAS AND WIRELESS PROPAGATION LETTERS, 2022, 21 (05) :997-1001