Microalgae as a key tool in achieving carbon neutrality for bioproduct production

被引:45
作者
Sadvakasova, Assemgul K. [1 ]
Kossalbayev, Bekzhan D. [1 ,2 ,3 ]
Bauenova, Meruyert O. [1 ]
Balouch, Huma [1 ]
Leong, Yoong Kit [4 ,5 ]
Zayadan, Bolatkhan K. [1 ]
Huang, Zhiyong [6 ,7 ]
Alharby, Hesham F. [8 ]
Tomo, Tatsuya [9 ]
Chang, Jo-Shu [4 ,5 ,10 ,11 ]
Allakhverdiev, Suleyman I. [12 ,13 ,14 ]
机构
[1] Al Farabi Kazakh Natl Univ, Fac Biol & Biotechnol, Al Farabi 71, Alma Ata 050038, Kazakhstan
[2] Satbayev Univ, Inst Geol, Dept Chem & Biochem Engn, Alma Ata 050043, Kazakhstan
[3] Satbayev Univ, Oil Gas Business Inst, Alma Ata 050043, Kazakhstan
[4] Tunghai Univ, Dept Chem & Mat Engn, Taichung 407, Taiwan
[5] Tunghai Univ, Res Ctr Smart Sustainable Circular Econ, Taichung 407, Taiwan
[6] Chinese Acad Sci, Tianjin Inst Ind Biotechnol, Tianjin Key Lab Ind Biol Syst & Bioproc Engn, Tianjin 300308, Peoples R China
[7] Natl Technol Innovat Ctr Synthet Biol, Tianjin 300308, Peoples R China
[8] King Abdulaziz Univ, Fac Sci, Dept Biol Sci, Jeddah 21589, Saudi Arabia
[9] Tokyo Univ Sci, Grad Sch Sci, Dept Phys, 1-3 Kagurazaka,Shinjuku Ku, Tokyo 1628601, Japan
[10] Natl Cheng Kung Univ, Dept Chem Engn, Tainan 701, Taiwan
[11] Yuan Ze Univ, Dept Chem Engn & Mat Sci, Chungli 32003, Taiwan
[12] Russian Acad Sci, KA Timiryazev Inst Plant Physiol, Bot Skaya St 35, Moscow 127276, Russia
[13] MV Lomonosov Moscow State Univ, Fac Biol, Dept Plant Physiol, Leninskie Gory 1-12, Moscow 119991, Russia
[14] Bahcesehir Univ, Fac Engn & Nat Sci, Istanbul, Turkiye
来源
ALGAL RESEARCH-BIOMASS BIOFUELS AND BIOPRODUCTS | 2023年 / 72卷
关键词
Microalgae; CO; 2; emissions; Carbon neutrality; Decarbonization; Bioenergy; Bioproducts; PHOTOBIOLOGICAL H-2 PRODUCTION; WASTE-WATER; MARINE DIATOM; DIACYLGLYCEROL ACYLTRANSFERASE; HYDROGEN PHOTOPRODUCTION; BIODIESEL PRODUCTION; CHLORELLA-VULGARIS; ETHANOL-PRODUCTION; BIOFUEL PRODUCTION; DUNALIELLA-SALINA;
D O I
10.1016/j.algal.2023.103096
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
The upcoming global climate change as a result of anthropogenic action is now increasingly attracting the attention of scientific communities. Over the past three decades, researchers and industries around the world have spent a lot of time and effort developing various carbon capture and storage technologies, which, despite their promise, are still economically complex, with unclear long-term consequences to the environment. As an alternative, biological carbon sequestration is considered an attractive method of atmospheric CO2 fixation with the production of biomass, which, in turn, can be used as a readily renewable feedstock for the production of biofuels and other valuable products. This review focuses on the latest data of microalgae research in terms of key carbon footprint minimization strategies, which include features of the carbon concentrating mechanism (CCM) in microalgae, the main range of biofuels and the possibility of obtaining valuable metabolites based on them, such as bioplastics, biofertilizers, and biologically active compounds.
引用
收藏
页数:18
相关论文
共 224 条
[61]   The dual effect of a ferredoxin-hydrogenase fusion protein in vivo: successful divergence of the photosynthetic electron flux towards hydrogen production and elevated oxygen tolerance [J].
Eilenberg, Haviva ;
Weiner, Iddo ;
Ben-Zvi, Oren ;
Pundak, Carmel ;
Marmari, Abigail ;
Liran, Oded ;
Wecker, Matt S. ;
Milrad, Yuval ;
Yacoby, Iftach .
BIOTECHNOLOGY FOR BIOFUELS, 2016, 9
[62]   Dunaliella salina exopolysaccharides: a promising biostimulant for salt stress tolerance in tomato (Solanum lycopersicum) [J].
EL Arroussi, H. ;
Benhima, R. ;
Elbaouchi, A. ;
Sijilmassi, B. ;
EL Mernissi, N. ;
Aafsar, A. ;
Meftah-Kadmiri, I. ;
Bendaou, N. ;
Smouni, A. .
JOURNAL OF APPLIED PHYCOLOGY, 2018, 30 (05) :2929-2941
[63]   A short history of RubisCO: the rise and fall (?) of Nature's predominant CO2 fixing enzyme [J].
Erb, Tobias J. ;
Zarzycki, Jan .
CURRENT OPINION IN BIOTECHNOLOGY, 2018, 49 :100-107
[64]  
Faheed F. A., 2008, Journal of Agriculture and Social Sciences, V4, P165
[65]   Acetic acid is key for synergetic hydrogen production in Chlamydomonas-bacteria co-cultures [J].
Fakhimi, Neda ;
Dubini, Alexandra ;
Tavakoli, Omid ;
Gonzalez-Ballester, David .
BIORESOURCE TECHNOLOGY, 2019, 289
[66]   Biodiesel production from theChlorella vulgarisandSpirulina platensismicroalgae by electrolysis using CaO/KOH-Fe3O4and KF/KOH-Fe3O4as magnetic nanocatalysts [J].
Farrokheh, Alireza ;
Tahvildari, Kambiz ;
Nozari, Maryam .
BIOMASS CONVERSION AND BIOREFINERY, 2022, 12 (02) :403-417
[67]   Modelling the pyrenoid-based CO2-concentrating mechanism provides insights into its operating principles and a roadmap for its engineering into crops [J].
Fei, Chenyi ;
Wilson, Alexandra T. ;
Mangan, Niall M. ;
Wingreen, Ned S. ;
Jonikas, Martin C. .
NATURE PLANTS, 2022, 8 (05) :583-+
[68]   Framework for performance measurement and management in a collaborative business environment [J].
Ferreira, Pedro Sena ;
Shamsuzzoha, A. H. M. ;
Toscano, Cesar ;
Cunha, Pedro .
INTERNATIONAL JOURNAL OF PRODUCTIVITY AND PERFORMANCE MANAGEMENT, 2012, 61 (06) :672-690
[69]   Microalgal biomass as a biorefinery platform for biobutanol and biodiesel production [J].
Figueroa-Torres, Gonzalo M. ;
Mahmood, Wan M. Asyraf Wan ;
Pittman, Jon K. ;
Theodoropoulos, Constantinos .
BIOCHEMICAL ENGINEERING JOURNAL, 2020, 153
[70]   Optimization of an integrated algae-based biorefinery for the production of biodiesel, astaxanthin and PHB [J].
Garcia Prieto, Carla V. ;
Ramos, Fernando D. ;
Estrada, Vanina ;
Villar, Marcelo A. ;
Soledad Diaz, M. .
ENERGY, 2017, 139 :1159-1172