Association and Interaction of Genetics and Area-Level Socioeconomic Factors on the Prevalence of Type 2 Diabetes and Obesity

被引:13
作者
Cromer, Sara J. [4 ]
Lakhani, Chirag M.
Mercader, Josep M. [4 ]
Majarian, Timothy D. [4 ]
Schroeder, Philip [3 ,4 ]
Cole, Joanne B. [4 ,7 ,8 ]
Florez, Jose C. [4 ]
Patel, Chirag J. [5 ]
Manning, Alisa K. [4 ,9 ]
Burnett-Bowie, Sherri-Ann M. [2 ,10 ]
Merino, Jordi [1 ,2 ,3 ,4 ,6 ,11 ]
Udler, Miriam S. [1 ,2 ,3 ,4 ,6 ]
机构
[1] Massachusetts Gen Hosp, Endocrine Div, Diabet Unit, Boston, MA 02114 USA
[2] Harvard Med Sch, Dept Med, Boston, MA 02115 USA
[3] Broad Inst MIT & Harvard, Program Metab, Cambridge, MA 02142 USA
[4] Broad Inst MIT & Harvard, Program Med & Populat Genet, Cambridge, MA 02142 USA
[5] Harvard Med Sch, Dept Biomed Informat, Boston, MA USA
[6] Massachusetts Gen Hosp, Ctr Genom Med, Boston, MA 02114 USA
[7] Boston Childrens Hosp, Div Endocrinol, Boston, MA USA
[8] Univ Colorado, Dept Biomed Informat, Sch Med, Aurora, CO USA
[9] Massachusetts Gen Hosp, Dept Med, Clin & Translat Epidemiol Unit, Boston, MA USA
[10] Massachusetts Gen Hosp, Endocrine Div, Endocrine Unit, Boston, MA USA
[11] Univ Copenhagen, Novo Nord Fdn Ctr Basic Metab Res, Fac Hlth & Med Sci, Copenhagen, Denmark
基金
美国国家卫生研究院;
关键词
RISK SCORES; BIOBANK; METAANALYSIS;
D O I
10.2337/dc22-1954
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
OBJECTIVEQuantify the impact of genetic and socioeconomic factors on risk of type 2 diabetes (T2D) and obesity. RESEARCH DESIGN AND METHODSAmong participants in the Mass General Brigham Biobank (MGBB) and UK Biobank (UKB), we used logistic regression models to calculate cross-sectional odds of T2D and obesity using 1) polygenic risk scores for T2D and BMI and 2) area-level socioeconomic risk (educational attainment) measures. The primary analysis included 26,737 participants of European genetic ancestry in MGBB with replication in UKB (N = 223,843), as well as in participants of non-European ancestry (MGBB N = 3,468; UKB N = 7,459). RESULTSThe area-level socioeconomic measure most strongly associated with both T2D and obesity was percent without a college degree, and associations with disease prevalence were independent of genetic risk (P < 0.001 for each). Moving from lowest to highest quintiles of combined genetic and socioeconomic burden more than tripled T2D (3.1% to 22.2%) and obesity (20.9% to 69.0%) prevalence. Favorable socioeconomic risk was associated with lower disease prevalence, even in those with highest genetic risk (T2D 13.0% vs. 22.2%, obesity 53.6% vs. 69.0% in lowest vs. highest socioeconomic risk quintiles). Additive effects of genetic and socioeconomic factors accounted for 13.2% and 16.7% of T2D and obesity prevalence, respectively, explained by these models. Findings were replicated in independent European and non-European ancestral populations. CONCLUSIONSGenetic and socioeconomic factors significantly interact to increase risk of T2D and obesity. Favorable area-level socioeconomic status was associated with an almost 50% lower T2D prevalence in those with high genetic risk.
引用
收藏
页码:944 / +
页数:10
相关论文
共 39 条
[1]   Fast Principal Component Analysis of Large-Scale Genome-Wide Data [J].
Abraham, Gad ;
Inouye, Michael .
PLOS ONE, 2014, 9 (04)
[2]   Re-analysis of public genetic data reveals a rare X-chromosomal variant associated with type 2 diabetes [J].
Bonas-Guarch, Silvia ;
Guindo-Martinez, Marta ;
Miguel-Escalada, Irene ;
Grarup, Niels ;
Sebastian, David ;
Rodriguez-Fos, Elias ;
Sanchez, Friman ;
Planas-Felix, Merce ;
Cortes-Sanchez, Paula ;
Gonzalez, Santi ;
Timshel, Pascal ;
Pers, Tune H. ;
Morgan, Claire C. ;
Moran, Ignasi ;
Atla, Goutham ;
Gonzalez, Juan R. ;
Puiggros, Montserrat ;
Marti, Jonathan ;
Andersson, Ehm A. ;
Diaz, Carlos ;
Badia, Rosa M. ;
Udler, Miriam ;
Leong, Aaron ;
Kaur, Varindepal ;
Flannick, Jason ;
Jorgensen, Torben ;
Linneberg, Allan ;
Jorgensen, Marit E. ;
Witte, Daniel R. ;
Christensen, Cramer ;
Brandslund, Ivan ;
Appel, Emil V. ;
Scott, Robert A. ;
Luan, Jian'an ;
Langenberg, Claudia ;
Wareham, Nicholas J. ;
Pedersen, Oluf ;
Zorzano, Antonio ;
Florez, Jose C. ;
Hansen, Torben ;
Ferrer, Jorge ;
Maria Mercader, Josep ;
Torrents, David .
NATURE COMMUNICATIONS, 2018, 9
[3]   Decentralized and reproducible geocoding and characterization of community and environmental exposures for multisite studies [J].
Brokamp, Cole ;
Wolfe, Chris ;
Lingren, Todd ;
Harley, John ;
Ryan, Patrick .
JOURNAL OF THE AMERICAN MEDICAL INFORMATICS ASSOCIATION, 2018, 25 (03) :309-314
[4]   Measures of Social Deprivation That Predict Health Care Access and Need within a Rational Area of Primary Care Service Delivery [J].
Butler, Danielle C. ;
Petterson, Stephen ;
Phillips, Robert L. ;
Bazemore, Andrew W. .
HEALTH SERVICES RESEARCH, 2013, 48 (02) :539-559
[5]   The UK Biobank resource with deep phenotyping and genomic data [J].
Bycroft, Clare ;
Freeman, Colin ;
Petkova, Desislava ;
Band, Gavin ;
Elliott, Lloyd T. ;
Sharp, Kevin ;
Motyer, Allan ;
Vukcevic, Damjan ;
Delaneau, Olivier ;
O'Connell, Jared ;
Cortes, Adrian ;
Welsh, Samantha ;
Young, Alan ;
Effingham, Mark ;
McVean, Gil ;
Leslie, Stephen ;
Allen, Naomi ;
Donnelly, Peter ;
Marchini, Jonathan .
NATURE, 2018, 562 (7726) :203-+
[6]   The Mass General Brigham Biobank Portal: an i2b2-based data repository linking disparate and high-dimensional patient data to support multimodal analytics [J].
Castro, Victor M. ;
Gainer, Vivian ;
Wattanasin, Nich ;
Benoit, Barbara ;
Cagan, Andrew ;
Ghosh, Bhaswati ;
Goryachev, Sergey ;
Metta, Reeta ;
Park, Heekyong ;
Wang, David ;
Mendis, Michael ;
Rees, Martin ;
Herrick, Christopher ;
Murphy, Shawn N. .
JOURNAL OF THE AMERICAN MEDICAL INFORMATICS ASSOCIATION, 2022, 29 (04) :643-651
[7]   The Effects of Exposure to Better Neighborhoods on Children: New Evidence from the Moving to Opportunity Experiment [J].
Chetty, Raj ;
Hendren, Nathaniel ;
Katz, Lawrence F. .
AMERICAN ECONOMIC REVIEW, 2016, 106 (04) :855-902
[8]   Controlling for population structure and genotyping platform bias in the eMERGE multi-institutional biobank linked to electronic health records [J].
Crosslin, David R. ;
Tromp, Gerard ;
Burt, Amber ;
Kim, Daniel S. ;
Verma, Shefali S. ;
Lucas, Anastasia M. ;
Bradford, Yuki ;
Crawford, Dana C. ;
Armasu, Sebastian M. ;
Heit, John A. ;
Hayes, M. Geoffrey ;
Kuivaniemi, Helena ;
Ritchie, Marylyn D. ;
Jarvik, Gail P. ;
de Andrade, Mariza .
FRONTIERS IN GENETICS, 2014, 5
[9]   Algorithms for the Capture and Adjudication of Prevalent and Incident Diabetes in UK Biobank [J].
Eastwood, Sophie V. ;
Mathur, Rohini ;
Atkinson, Mark ;
Brophy, Sinead ;
Sudlow, Cathie ;
Flaig, Robin ;
de Lusignan, Simon ;
Allen, Naomi ;
Chaturvedi, Nishi .
PLOS ONE, 2016, 11 (09)
[10]  
Flanagan BE, 2018, J ENVIRON HEALTH, V80, P34