Machine learning-based draft prediction for mouldboard ploughing in sandy clay loam soil

被引:11
作者
Mahore, Vijay [1 ]
Soni, Peeyush [1 ]
Paul, Arpita [1 ]
Patidar, Prakhar [1 ]
Machavaram, Rajendra [1 ]
机构
[1] Indian Inst Technol Kharagpur, Agr & Food Engn Dept, Kharagpur 721302, West Bengal, India
关键词
Draft prediction; Machine learning; Mouldboard ploughing; Gradient Boosting; Random Forest; Tillage operation; FORCE PREDICTION; FINITE-ELEMENT;
D O I
10.1016/j.jterra.2023.09.002
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Machine learning (ML) models are developed to predict draft for mouldboard ploughs operating in sandyclay-loam soil. The draft of tillage tools is influenced by soil cone-index, tillage-depth, and operatingspeed. We used a three-point hitch dynamometer to measure draft force, a cone penetrometer for soil cone-index, rotary potentiometers for tillage-depth, and proximity sensors for operating-speed. Draft requirements were experimentally measured for a two-bottom mouldboard plough at three different tillage-depths and various operating-speeds. We developed prediction models using recent ML algorithms, including Linear-Regression, Ridge-Regression, Support-Vector-Machines, Decision-Trees, k-Nearest-Neighbours, Random-Forests, Adaptive-Boosting, Gradient-Boosting-Regression, LightGradient-Boosting-Machine, and Categorical-Boosting. These models were trained and tested using a dataset of field measurements including soil cone-index, tillage-depth, operating-speed, and corresponding draft values. We compared the measured draft with the commonly used ASABE model, which resulted in an R2 of 0.62. Our ML models outperformed the ASABE model with significantly better performance. The test data set achieved R2 values ranging from 0.906 to 0.983. These results demonstrate that the developed ML models effectively capture the complex nonlinear relationship between input parameters and draft of mouldboard plough. (c) 2023 ISTVS. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:31 / 40
页数:10
相关论文
共 50 条
  • [21] Machine Learning-Based Retention Time Prediction of Trimethylsilyl Derivatives of Metabolites
    de Cripan, Sara M.
    Cereto-Massague, Adria
    Herrero, Pol
    Barcaru, Andrei
    Canela, Nuria
    Domingo-Almenara, Xavier
    BIOMEDICINES, 2022, 10 (04)
  • [22] Machine Learning-Based Prediction of Shear Strength Parameters of Rock Materials
    Han, Dayong
    Xue, Xinhua
    ROCK MECHANICS AND ROCK ENGINEERING, 2024, 57 (10) : 8795 - 8819
  • [23] Machine learning-based prediction for maximum displacement of seismic isolation systems
    Nguyen, Hoang D.
    Dao, Nhan D.
    Shin, Myoungsu
    JOURNAL OF BUILDING ENGINEERING, 2022, 51
  • [24] Machine Learning-Based Approach for Hardware Faults Prediction
    Khalil, Kasem
    Eldash, Omar
    Kumar, Ashok
    Bayoumi, Magdy
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2020, 67 (11) : 3880 - 3892
  • [25] Interpretability of machine learning-based prediction models in healthcare
    Stiglic, Gregor
    Kocbek, Primoz
    Fijacko, Nino
    Zitnik, Marinka
    Verbert, Katrien
    Cilar, Leona
    WILEY INTERDISCIPLINARY REVIEWS-DATA MINING AND KNOWLEDGE DISCOVERY, 2020, 10 (05)
  • [26] Machine Learning-Based Prediction of the Martensite Start Temperature
    Wentzien, Marcel
    Koch, Marcel
    Friedrich, Thomas
    Ingber, Jerome
    Kempka, Henning
    Schmalzried, Dirk
    Kunert, Maik
    STEEL RESEARCH INTERNATIONAL, 2024, 95 (10)
  • [27] Machine learning-based icing prediction on wind turbines
    Kreutz, Markus
    Ait-Alla, Abderrahim
    Varasteh, Kamaloddin
    Oelker, Stephan
    Greulich, Andreas
    Freitag, Michael
    Thoben, Klaus-Dieter
    52ND CIRP CONFERENCE ON MANUFACTURING SYSTEMS (CMS), 2019, 81 : 423 - 428
  • [28] A Machine Learning-Based Approach for Crop Price Prediction
    Gururaj, H. L.
    Janhavi, V.
    Lakshmi, H.
    Soundarya, B. C.
    Paramesha, K.
    Ramesh, B.
    Rajendra, A. B.
    JOURNAL OF CIRCUITS SYSTEMS AND COMPUTERS, 2024, 33 (03)
  • [29] Machine Learning-Based Prediction of Stroke in Emergency Departments
    Abedi, Vida
    Misra, Debdipto
    Chaudhary, Durgesh
    Avula, Venkatesh
    Schirmer, Clemens M.
    Li, Jiang
    Zand, Ramin
    THERAPEUTIC ADVANCES IN NEUROLOGICAL DISORDERS, 2024, 17
  • [30] Machine learning-based model for prediction of concrete strength
    Aswal, Vivek Singh
    Singh, B. K.
    Maheshwari, Rohit
    MULTISCALE AND MULTIDISCIPLINARY MODELING EXPERIMENTS AND DESIGN, 2025, 8 (01)