Parameter identification of a phase-field fracture model using integrated digital image correlation

被引:11
作者
Kosin, V. [1 ,2 ]
Fau, A. [1 ]
Jailin, C. [3 ]
Hild, F. [1 ]
Wick, T. [1 ,2 ]
机构
[1] Univ Paris Saclay, CentraleSupelec, ENS Paris-Saclay, CNRS,LMPS Lab Mecan Paris Saclay, Gif Sur Yvette, France
[2] Leibniz Univ Hannover, Inst Appl Math, Hannover, Germany
[3] GE Healthcare, Buc, France
关键词
Phase-field fracture modeling; Digital image correlation (DIC); Conditioning; Sensitivity analysis; FINITE-ELEMENT-METHOD; MOLECULAR-DYNAMICS; CRACK-PROPAGATION; BRITTLE-FRACTURE; NONLOCAL MODELS; DAMAGE; CALIBRATION; GROWTH;
D O I
10.1016/j.cma.2023.116689
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Phase-field fracture (PFF) modeling is a popular approach to model and simulate fracture processes in solids. Accurate material parameters and boundary conditions are of utmost importance to ensure a good prediction quality of numerical simulations. In this work, an Integrated Digital Image Correlation (IDIC) algorithm is proposed to calibrate boundary conditions, Poisson's ratio, fracture energy and internal length, all at once, by using the phase-field model itself and images of a deforming sample. The presented approach is applied to virtual experiments mimicking a single edge notched shear test and implemented in the open-source deal.II-based software pfm-cracks and the digital image correlation library Correli 3.2. The reliability of the results is investigated for different levels of acquisition noise, thereby demonstrating high robustness and accuracy for a wide range of noise levels. The conditioning of the problem is analyzed via sensitivity fields for all parameters and the eigendecomposition of the Hessian matrix used in the IDIC algorithm.
引用
收藏
页数:18
相关论文
共 89 条
[1]   A review on phase-field models of brittle fracture and a new fast hybrid formulation [J].
Ambati, Marreddy ;
Gerasimov, Tymofiy ;
De Lorenzis, Laura .
COMPUTATIONAL MECHANICS, 2015, 55 (02) :383-405
[2]   The deal.II library, Version 9.4 [J].
Arndt, Daniel ;
Bangerth, Wolfgang ;
Feder, Marco ;
Fehling, Marc ;
Gassmoller, Rene ;
Heister, Timo ;
Heltai, Luca ;
Kronbichler, Martin ;
Maier, Matthias ;
Munch, Peter ;
Pelteret, Jean-Paul ;
Sticko, Simon ;
Turcksin, Bruno ;
Wells, David .
JOURNAL OF NUMERICAL MATHEMATICS, 2022, 30 (03) :231-246
[3]   The DEAL.II finite element library: Design, features, and insights [J].
Arndt, Daniel ;
Bangerth, Wolfgang ;
Davydov, Denis ;
Heister, Timo ;
Heltai, Luca ;
Kronbichler, Martin ;
Maier, Matthias ;
Pelteret, Jean-Paul ;
Turcksin, Bruno ;
Wells, David .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2021, 81 :407-422
[4]   Stable Generalized Finite Element Method (SGFEM) [J].
Babuska, I. ;
Banerjee, U. .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2012, 201 :91-111
[5]  
BAZANT ZP, 1989, J ENG MECH-ASCE, V115, P755
[6]   Analysis of image series through global digital image correlation [J].
Besnard, Gilles ;
Leclerc, Hugo ;
Hild, Francois ;
Roux, Stephane ;
Swiergiel, Nicolas .
JOURNAL OF STRAIN ANALYSIS FOR ENGINEERING DESIGN, 2012, 47 (04) :214-228
[7]   Numerical experiments in revisited brittle fracture [J].
Bourdin, B ;
Francfort, GA ;
Marigo, JJ .
JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS, 2000, 48 (04) :797-826
[8]  
Bourdin B., 2019, SIAM NEWS, V9
[9]   The variational approach to fracture [J].
Bourdin, Blaise ;
Francfort, Gilles A. ;
Marigo, Jean-Jacques .
JOURNAL OF ELASTICITY, 2008, 91 (1-3) :5-148
[10]   p4est: SCALABLE ALGORITHMS FOR PARALLEL ADAPTIVE MESH REFINEMENT ON FORESTS OF OCTREES [J].
Burstedde, Carsten ;
Wilcox, Lucas C. ;
Ghattas, Omar .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2011, 33 (03) :1103-1133