Ultrahigh Refractive Index Sensitivity With Lossy Mode Resonance in a Side-Polished Low-Index Polymer Optical Fiber

被引:4
作者
Lopez, Juan David [1 ]
Matias, Ignacio R. [2 ,3 ]
Werneck, Marcelo Martins [4 ]
da Silva Allil, Regina Celia [4 ]
Del Villar, Ignacio [2 ,3 ]
机构
[1] Univ Fed Rio de Janeiro, Nanotechnol Engn Res Program, BR-21941598 Rio De Janeiro, Brazil
[2] Univ Publ Navarra, Elect Elect & Commun Engn Dept, Pamplona 31006, Spain
[3] Univ Publ Navarra, Inst Smart Cities ISC, Pamplona 31006, Spain
[4] Univ Fed Rio de Janeiro, Elect Engn Res Program, BR-21941598 Rio De Janeiro, Brazil
关键词
Lossy mode resonance (LMR); low-index polymer optical fiber; refractive index (RI) sensor; side-polished optical fiber; INTERBAND CASCADE LASER; FORMALDEHYDE; SPECTROSCOPY; TEMPERATURE;
D O I
10.1109/TIM.2023.3338653
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This work presents a theoretical-experimental study of a refractive index (RI) sensor based on lossy mode resonances (LMRs) generated with a side-polished low-index polymer optical fiber. The theoretical part involves conducting simulations to determine the optimal coating thickness for achieving the first (1st) and second (2nd) LMR, as well as to determine their respective sensitivities. In the experimental part, a cyclic transparent fluoropolymer optical fiber is used, which is first polished and then coated with tin oxide (SnO2) thin film to obtain the LMR. The simulated and experimental results exhibit a high level of agreement. In the visible light spectrum region, the sensitivities for the first LMR are, respectively, 11 300 nm/RI unit (RIU) and 15 973 nm/RIU within the RI range of 1.333-1.345. Similarly, for the second LMR, the sensitivities are, respectively, 520 and 467 nm/RIU within the same RI range. Furthermore, experiments conducted in the near-infrared light spectrum region show a record sensitivity of 57 200 nm/RIU, while the second LMR exhibits a sensitivity of over 5 000 nm/RIU within the RI range of 1.340-1.345. These results underscore the potential of utilizing cyclic transparent optical polymer (CYTOP) fiber in various applications requiring the detection in liquid samples, such as biosensors or chemical sensors.
引用
收藏
页码:1 / 9
页数:9
相关论文
共 26 条
  • [1] Transportable, fast and high sensitive near real-time analyzers: Formaldehyde detection
    Allouch, Alaa
    Guglielmino, Maud
    Bernhardt, Pierre
    Serra, Christophe A.
    Le Calve, Stephane
    [J]. SENSORS AND ACTUATORS B-CHEMICAL, 2013, 181 : 551 - 558
  • [2] Crossgrove R., 1994, National Academy of Sciences, P1
  • [3] A simple spot test quantification method to determine formaldehyde in aqueous samples
    Dar, Amara
    Shafique, Umer
    Anwar, Jamil
    Waheed-uz-Zaman
    Naseer, Arooj
    [J]. JOURNAL OF SAUDI CHEMICAL SOCIETY, 2016, 20 : S352 - S356
  • [4] Ppb-level formaldehyde detection using a CW room-temperature interband cascade laser and a miniature dense pattern multipass gas cell
    Dong, Lei
    Yu, Yajun
    Li, Chunguang
    So, Stephen
    Tittel, Frank K.
    [J]. OPTICS EXPRESS, 2015, 23 (15): : 19821 - 19830
  • [5] Laser sensors for energy systems and process industries: Perspectives and directions
    Farooq, Aamir
    Alquaity, Awad B. S.
    Raza, Mohsin
    Nasir, Ehson F.
    Yao, Shunchun
    Ren, Wei
    [J]. PROGRESS IN ENERGY AND COMBUSTION SCIENCE, 2022, 91
  • [6] Infrared laser-absorption sensing for combustion gases
    Goldenstein, Christopher S.
    Spearrin, R. Mitchell
    Jeffries, Jay B.
    Hanson, Ronald K.
    [J]. PROGRESS IN ENERGY AND COMBUSTION SCIENCE, 2017, 60 : 132 - 176
  • [7] The HITRAN2020 molecular spectroscopic database
    Gordon, I. E.
    Rothman, L. S.
    Hargreaves, R. J.
    Hashemi, R.
    Karlovets, E., V
    Skinner, F. M.
    Conway, E. K.
    Hill, C.
    Kochanov, R., V
    Tan, Y.
    Wcislo, P.
    Finenko, A. A.
    Nelson, K.
    Bernath, P. F.
    Birk, M.
    Boudon, V
    Campargue, A.
    Chance, K., V
    Coustenis, A.
    Drouin, B. J.
    Flaud, J-M
    Gamache, R. R.
    Hodges, J. T.
    Jacquemart, D.
    Mlawer, E. J.
    Nikitin, A., V
    Perevalov, V., I
    Rotger, M.
    Tennyson, J.
    Toon, G. C.
    Tran, H.
    Tyuterev, V. G.
    Adkins, E. M.
    Baker, A.
    Barbe, A.
    Cane, E.
    Csaszar, A. G.
    Dudaryonok, A.
    Egorov, O.
    Fleisher, A. J.
    Fleurbaey, H.
    Foltynowicz, A.
    Furtenbacher, T.
    Harrison, J. J.
    Hartmann, J-M
    Horneman, V-M
    Huang, X.
    Karman, T.
    Karns, J.
    Kassi, S.
    [J]. JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER, 2022, 277
  • [8] A self-heating gas sensor with integrated NiO thin-film for formaldehyde detection
    Lee, Chia-Yen
    Chiang, Che-Ming
    Wang, Yu-Hsiang
    Ma, Rong-Hua
    [J]. SENSORS AND ACTUATORS B-CHEMICAL, 2007, 122 (02) : 503 - 510
  • [9] Ultrafast and Efficient Detection of Formaldehyde in Aqueous Solutions Using Chitosan-based Fluorescent Polymers
    Li, Ping
    Zhang, Dong
    Zhang, Yuchong
    Lu, Wei
    Wang, Wenqin
    Chen, Tao
    [J]. ACS SENSORS, 2018, 3 (11): : 2394 - 2401
  • [10] Outdoor formaldehyde matters and substantially impacts indoor formaldehyde concentrations
    Liu, Cong
    Miao, Xinyao
    Li, Jingguang
    [J]. BUILDING AND ENVIRONMENT, 2019, 158 (145-150) : 145 - 150