AI-based diagnosis of nuclear cataract from slit-lamp videos

被引:13
作者
Shimizu, Eisuke [1 ,2 ,3 ]
Tanji, Makoto [1 ,2 ]
Nakayama, Shintato [1 ,2 ]
Ishikawa, Toshiki [1 ,2 ]
Agata, Naomichi [1 ]
Yokoiwa, Ryota [1 ]
Nishimura, Hiroki [1 ,2 ,3 ]
Khemlani, Rohan Jeetendra [1 ,3 ]
Sato, Shinri [2 ,3 ]
Hanyuda, Akiko [2 ]
Sato, Yasunori [4 ]
机构
[1] OUI Inc, Tokyo, Japan
[2] Keio Univ, Sch Med, Dept Ophthalmol, Tokyo, Japan
[3] Yokohama Keiai Eye Clin, Yokohama, Japan
[4] Keio Univ, Sch Med, Dept Prevent Med & Publ Hlth, Tokyo, Japan
关键词
ARTIFICIAL-INTELLIGENCE; VISION IMPAIRMENT; CLASSIFICATION; BLINDNESS; DISTANCE; IMAGES; SYSTEM; TRENDS;
D O I
10.1038/s41598-023-49563-7
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In ophthalmology, the availability of many fundus photographs and optical coherence tomography images has spurred consideration of using artificial intelligence (AI) for diagnosing retinal and optic nerve disorders. However, AI application for diagnosing anterior segment eye conditions remains unfeasible due to limited standardized images and analysis models. We addressed this limitation by augmenting the quantity of standardized optical images using a video-recordable slit-lamp device. We then investigated whether our proposed machine learning (ML) AI algorithm could accurately diagnose cataracts from videos recorded with this device. We collected 206,574 cataract frames from 1812 cataract eye videos. Ophthalmologists graded the nuclear cataracts (NUCs) using the cataract grading scale of the World Health Organization. These gradings were used to train and validate an ML algorithm. A validation dataset was used to compare the NUC diagnosis and grading of AI and ophthalmologists. The results of individual cataract gradings were: NUC 0: area under the curve (AUC) = 0.967; NUC 1: AUC = 0.928; NUC 2: AUC = 0.923; and NUC 3: AUC = 0.949. Our ML-based cataract diagnostic model achieved performance comparable to a conventional device, presenting a promising and accurate auto diagnostic AI tool.
引用
收藏
页数:10
相关论文
共 46 条
[1]  
[Anonymous], 2018, Global Health Estimates 2016: Deaths by Cause, Age, Sex, by Country and by Region, 20002016
[2]  
[Anonymous], 2023, PyTorch Image Models
[3]   Incidence of Visually Impairing Cataracts Among Older Adults in Kenya [J].
Bastawrous, Andrew ;
Mathenge, Wanjiku ;
Nkurikiye, John ;
Wing, Kevin ;
Rono, Hillary ;
Gichangi, Michael ;
Weiss, Helen A. ;
Macleod, David ;
Foster, Allen ;
Burton, Matthew ;
Kuper, Hannah .
JAMA NETWORK OPEN, 2019, 2 (06) :e196354
[4]   Magnitude, temporal trends, and projections of the global prevalence of blindness and distance and near vision impairment: a systematic review and meta-analysis [J].
Bourne, Rupert R. A. ;
Flaxman, Seth R. ;
Braithwaite, Tasanee ;
Cicinelli, Maria V. ;
Das, Aditi ;
Jonas, Jost B. ;
Keeffe, Jill ;
Kempen, John H. ;
Leasher, Janet ;
Limburg, Hans ;
Naidoo, Kovin ;
Pesudovs, Konrad ;
Resnikoff, Serge ;
Silvester, Alex ;
Stevens, Gretchen A. ;
Tahhan, Nina ;
Wong, Tien Y. ;
Taylor, Hugh R. .
LANCET GLOBAL HEALTH, 2017, 5 (09) :E888-E897
[5]   THE OBJECTIVE ASSESSMENT OF CATARACT [J].
BROWN, NAP ;
BRON, AJ ;
AYLIFFE, W ;
SPARROW, J ;
HILL, AR .
EYE-TRANSACTIONS OF THE OPHTHALMOLOGICAL SOCIETIES OF THE UNITED KINGDOM, 1987, 1 :234-246
[6]   Validity of a New Computer-Aided Diagnosis Imaging Program to Quantify Nuclear Cataract from Slit-lamp Photographs [J].
Cheung, Carol Yim-lui ;
Li, Huiqi ;
Lamoureux, Ecosse L. ;
Mitchell, Paul ;
Wang, Jie Jin ;
Tan, Ava Grace ;
Johari, Lily K. ;
Liu, Jiang ;
Lim, Joo Hwee ;
Aung, Tin ;
Wong, Tien Yin .
INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2011, 52 (03) :1314-1319
[7]   Effects of cataract type and location on visual function: The Blue Mountains Eye Study [J].
Chua, BE ;
Mitchell, P ;
Cumming, RG .
EYE, 2004, 18 (08) :765-772
[8]   THE LENS OPACITIES CLASSIFICATION SYSTEM-III [J].
CHYLACK, LT ;
WOLFE, JK ;
SINGER, DM ;
LESKE, MC ;
BULLIMORE, MA ;
BAILEY, IL ;
FRIEND, J ;
MCCARTHY, D ;
WU, SY .
ARCHIVES OF OPHTHALMOLOGY, 1993, 111 (06) :831-836
[9]   Clinically applicable deep learning for diagnosis and referral in retinal disease [J].
De Fauw, Jeffrey ;
Ledsam, Joseph R. ;
Romera-Paredes, Bernardino ;
Nikolov, Stanislav ;
Tomasev, Nenad ;
Blackwell, Sam ;
Askham, Harry ;
Glorot, Xavier ;
O'Donoghue, Brendan ;
Visentin, Daniel ;
van den Driessche, George ;
Lakshminarayanan, Balaji ;
Meyer, Clemens ;
Mackinder, Faith ;
Bouton, Simon ;
Ayoub, Kareem ;
Chopra, Reena ;
King, Dominic ;
Karthikesalingam, Alan ;
Hughes, Cian O. ;
Raine, Rosalind ;
Hughes, Julian ;
Sim, Dawn A. ;
Egan, Catherine ;
Tufail, Adnan ;
Montgomery, Hugh ;
Hassabis, Demis ;
Rees, Geraint ;
Back, Trevor ;
Khaw, Peng T. ;
Suleyman, Mustafa ;
Cornebise, Julien ;
Keane, Pearse A. ;
Ronneberger, Olaf .
NATURE MEDICINE, 2018, 24 (09) :1342-+
[10]  
Martins TGD, 2022, SAO PAULO MED J, V140, P837, DOI [10.1590/1516-3180.2021.0713.R1.22022022, 10.1590/1516-3180.2021.0713.r1.22022022]